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Abstract

In this thesis, we show that the backaction noise acting on a small nanosphere
levitated in a standing-wave trap can be considerably reduced by utilising a
suitable reflective boundary. We examine the spherical mirror geometry as
a case study of this backaction suppression effect, discussing the theoretical
and experimental constraints. We model the backaction noise by computing
the spectral density of force fluctuations acting on the particle trapped at the
centre of a spherical mirror. We also compute the corresponding measurement
imprecision in an interferometric, shot-noise-limited position measurement and
show that backaction and imprecision agree, recovering the Heisenberg limit
of detection. The remainder of the thesis is devoted to analysis and a report
on the construction of two novel trapping configurations which could be used
to study the backaction suppression effect.
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was chosen to have θm = π/3. The white region corresponds to
domain (c) in 3.2, in which the scatter is affected by the mirror.
The information in the white region of the top half-space
is never accessible because this portion of the solid angle is
covered by the mirror. At k0rm = nπ the position information
is inaccessible in the white region of both half-spaces. The
colored region corresponds to free-space information. . . . . . 52

3.5 Backaction noise SF
ii (ω) against spherical mirror NA found by

solving (3.39) with ρ = −1. Explicit solutions for the curves
are given in B.2. Filled lines indicate backaction for k0rm = nπ

while dotted lines for k0rm = nπ ± π/2. Dashed lines indicate
free-space levels in a standing wave (at θm = 0 ). . . . . . . . . 63

3.6 Backaction noise SF
ii (ω) against displacement of the trap centre

zt along mirror axis, found by solving (3.37) to zeroth order in
displacement about the trap centre. Dashed lines indicate free-
space levels. Vertical lines show stable trapping positions for
weak focusing (A ≈ 1) where the solutions to (3.37) are valid
approximations to backaction. . . . . . . . . . . . . . . . . . . 64

List of Figures 10



List of Figures

3.7 Threshold pressure (full red line) at which the heating rate from
residual gas becomes comparable to laser recoil noise (based on
equation (3.48)), plotted against trap depth for rp = 150 nm and
λ = 1550 nm. The red dashed lines with a shaded region denote
trap depths achievable in the two experimental arrangements
considered in the two arrangements considered in this thesis -
the spherical mirror angled reflection trap (SMART) and the
standing wave interference fibre trap (SWIFT). The teal and
gray lines correspond to estimates of a trap depth based on
the experimental parameters in an observation of laser recoil
noise by Jain et al. [38,103] and Kamba et al. [104] respectively.
We also show the corresponding threshold pressure trends using
(3.48) for their experimental parameters marked with the same
colours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Diagram showing the difference between (right) the SMART
configuration and (left) an ordinary standing wave trap formed
along the mirror axis of symmetry. In both diagrams we are
assuming that the beam is polarised out of the page. In the
setup on the left, central region of the lens is swamped by laser
retroreflection and the particle scatter cannot easily be accessed
for detection. In the setup on the right, particle scatter is
spatially separated from the trapping beam. In both diagrams
the same portion of the solid angle is available, but it is easier
to access isolated scatter when the trapping beam is angled.
Because of the spherical symmetry about the mirror centre, the
conditions for retroreflection in both setups are the same. . . . 73

4.2 Contribution of the Gouy phase shift of a Gaussian beam to
the round-trip phase. The beam is focused to point F (z = zf )
about the mirror centre C (z = 0). The beam is reflected at M
(z = rm). When points C,F and M correspond to those that
yield retro-reflection, the Gouy phase difference between C and
M is equal to exactly π/2. . . . . . . . . . . . . . . . . . . . . 75

List of Figures 11



List of Figures

4.3 Implementation of the SMART arrangement, used to obtain the
experimental results in this chapter. Crimson lines represent
optical fibres. 10 % of the 1550 nm laser is used to seed the
erbium-doped fibre amplifier (EDFA) that is then used for
trapping via the trapping channel (CH1). The remaining 90
% is used either dumped or used as reference for heterodyne
detection with the collected scatter via the detection channel
(CH2) on the photodiode PD2. Photodiode PD1 was mainly
used to assess alignment of CH1 beam by measurement of back-
reflection coupled into fibre. λ/2 and λ/4 denote waveplates
used to control polarisation. The local oscillator was used
to modulate the trapping light’s frequency for heterodyne
detection, and the intensity via the acousto-optic modulators
(AOMs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Intensity profile of the trapping field in SMART about the beam
focus - a superposition of two identical counter-propagating
Gaussian beams with the waist w0 = 4.5 µm. The beam axis
is inclined at a shallow angle to the mirror axis of symmetry.
On the plot x∥ and x⊥ denote coordinates parallel (fast) and
perpendicular (slow) to the beam axis respectively. . . . . . . 78

4.5 Detection geometry in SMART. The lens is illuminated off-
axis with trapping light E0 and focused. The trapping light
is polarised out of the page along ŷ. The particle, displaced
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Chapter 1

Introduction

Thorough theoretical studies from over 40 years ago, into the achievable
performance of future gravitational wave detectors, elucidated the fundamental
constraints on detection imposed by quantum mechanics when continuously
monitoring the position of a free mass [1, 2]. In a continuous measurement,
quantum fluctuations of the electromagnetic field introduce random
perturbations to the motion of the mass. This measurement backaction places
limits on the achievable measurement error, known as the standard quantum
limit [3]. In recent years, technology has been reaching unprecedented
displacement sensitivities approaching the fundamental limits of detection;
best example being the celebrated first detection of gravitational waves
at the LIGO facility in 2015 [4]. At the time, the LIGO detectors were
capable of detecting a difference of 10−19 m/

√
Hz in the span of the two

4 km interferometer arms. Limits are also being approached by modern,
relatively low-power, optomechanical devices; systems in which light strongly
interacts with motion of a mechanical resonator. In the past two decades,
optomechanics emerged as a promising experimental platform for detecting
ultrasmall displacements on chip-sized devices for various commercial detector
applications, quantum enhanced detection beyond the standard quantum
limit, and potentially bringing the motion large masses into the quantum
regime.
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Chapter 1. Introduction

1.1 Cavity optomechanics
In the early 2000s, extension of fabrication techniques, used at the time for
micromechanical devices, to the nano-scale [5] enabled fabricating high-finesse
micro-cavities in various configurations deviating from the canonical example
in optomechanics of an illuminated cavity with a vibrating end-mirror [6, 7]:
silica micro-toroids [8, 9], periodic silicon nanobeams [10], and silicon nitride
membranes [11] are notable examples.

Experiments utilising such devices have made remarkable progress in
isolating and controlling the motion of the mechanical element. At sufficiently
low energies typically quantum qualities become resolvable in the motion,
such as quantised energy levels and zero-point fluctuations. Capitalising
on the technique of cavity sideband cooling initially developed in atomic
physics [12] allowed these resonators to reach exceedingly low centre-of-mass
(CM) temperatures [9]. This method relies on scattering of light from a
vibrating mechanical element, which modulates the phase of the scattered
light at the mechanical frequency [9, 13]. In frequency domain, this generates
positive (blue) and negative (red) sidebands in the optical spectrum. When
the mechanical element scatters into a high-finesse cavity (with linewidth
narrower than the mechanical frequency), the sidebands become resolvable;
Cooling can be achieved by detuning the frequency of the illuminating laser
to spectrally align it with the red sideband of the cavity linewidth, thereby
enhancing scattering process responsible for removal of energy from the
oscillator. In combination with cryogenic pre-cooling, cooling of motion down
to its ground-state was eventually achieved [14].

Cavity optomechanical systems find a wide array of applications in quantum
information processing, high-frequency gravitational wave detection [15] and
other sensing applications [7], particularly of acceleration, force, mass.
They also show promise of quantum-enhanced sensing beyond the standard
quantum limit by employing squeezed light, [16–18] such as optomechanical
magnetometry [19].

In context of fundamental applications, optomechanical systems offer a wide
and untested parameter range for testing quantum behaviours of macroscopic
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objects [7]. The extent of validity to which quantum mechanics holds on
macroscopic scales was puzzling since the early days of quantum mechanics [20]
and remains a long-standing open question in physics [21]. In order to probe
the boundary between quantum and classical physics, great experimental effort
is currently exerted with matter-wave experiments to test ever larger systems
for exhibition of quantum properties [22]. In contrast to existing experiments,
experimental recipe used for preparing the initial, coherent quantum state of a
macroscopic optomechanical system demands cooling the system’s mechanical
mode to its ground state. This protocol requires extreme isolation from
environmental noise and motional control. However, recent progress made in
gaining quantum control over optomechanical systems may soon allow these
systems to effectively investigate foundational questions pertaining to the
quantum-to-classical transition in unexplored parameter regimes [23].

1.2 Why levitate nano-sized particles?

Larger systems couple more efficiently to the environment leading to a
more rapid loss of quantum coherence. Cavity optomechanical systems
are particularly susceptible, as the mechanical element is usually physically
coupled to a larger substrate, which provides the dominating source of thermal
dissipation in modern experiments [14, 24–26]. Motivated by the removal of
this clamping dissipation, levitated particle systems were proposed [27–29]
as a candidate optomechanical platforms to reach unprecedented degrees of
isolation of macroscopic systems.

In levitated optomechanics, small dielectric particles (typically glass and
around 10−7m in diameter) are trapped by optical forces, (usually) in the
focus of a laser beam. The particle constitutes a harmonic oscillator, vibrating
at frequencies in the kHz range. Significantly larger than atoms, large masses
and polarisabilities of the nanoparticles offer advantages in sensing and
fundamental tests over existing experiments [30]. On the other hand, smaller
than micro-scale objects, glass nanoparticles retain a simple description of a
point-like dipole scatterer for typical laser wavelengths and good stability in
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single-beam optical traps.

These optical traps rely on the principle of optical tweezers, pioneered by
Ashkin and Dziedzic in their Nobel Prize-winning work in the 1970s and
onwards [31–33]. Advancements to trapping in air [34] and the particle loading
mechanism [35] sparked a series of achievements in the field. Crucially, cooling
of particle motion in vacuum, first by utilising the scattering force of additional
cooling beams [36] and later using a single beam by parametric feedback,
exploiting the directional dependence of the optical gradient force [37] to
CM temperatures below 1 Kelvin. The latter has been used in aid of first
direct observation in levitated optomechanics of radiation pressure shot noise
due to laser recoil [38] at pressures below 10−7 mbar. Both realise an active
feedback scheme, in which a dynamic force acts on the trapped particle based
on feedback signal that is derived from the particle positon encoded in the
detected particle scatter. This is in contrast to the aforementioned cavity
cooling schemes which are examples of passive cooling techniques; that is,
they do not require active experimental monitoring of the oscillator’s position
to cool its motion. As originally envisioned, cavity cooling techniques were
employed to cool the CM motion of trapped particles, initially achieving
modest cooling performance [39], limited by laser phase noise within the cavity
standing wave [40]. Employing the coherent scattering method of resolved-
sideband cooling allowed researchers to overcome these limitations [41] and
eventually led to the first report of ground state cooling of a trapped particle
in room temperature environment [42]. This method of cavity cooling was
recently used to simultaneously cool two motional degrees of freedom to their
ground state [43]. Notably, ground state cooling by real-time active feedback
without the use of a cavity was also later reported [44]. Unlike the previous
active feedback schemes, in this case the method relies on exerting a force
with feedback voltage on residual charge carried by the trapped particle in
conjunction with optimal quantum control protocols.

Progress in ground-state cooling of levitated nanoparticles mark the
first step in realising quantum superposition experiments with large masses,
bringing the prospect of testing macroscopic superpositions with ∼ 106 atomic
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mass units within reach. Major steps in resolving quantum behaviours of more
massive systems are being made in matter-wave interferometry experiments,
in which interference of large fullerene molecules was demonstrated in a
Talbot-Lau interferometer [45]. Similar experiments in recent years have
demonstrated matter-wave inteference of the heaviest objects to date [22].
Levitated optomechanical systems can operate under the same experimental
principle. In the last decade, realistic experiments utilising levitated
nano-sized spheres have been proposed [46] as one of the platforms in the
pursuit of this goal and is actively pursued in the research campaign of
the macroscopic quantum resonators (MAQRO) space mission [47]. In the
classical regime, levitated optomechanics finds applications in non-equilibrium
nano-scale thermodynamics [48], gravitational wave detection [49] with room-
temperature sensors reaching force and acceleration sensitivities near the
standard quantum limit [30].

The field of levitating nano-sized objects has grown into a large and diverse
discipline of experimental physics. Recently, focus has also been also placed
on exploring the capabilities of optically trapped nano-objects of different
shapes, with rotational degrees of freedom such as rods [50], torque sensor
nanodumbells [51] or hexagonal prisms for gravitational wave detection [52].
Levitated optomechanics is also established as a branch of a broader field
of levitodynamics [53], using electric, magnetic, and hybridised trapping
mechanisms to improve trap performance [54], cooling [44], or coupling with
other degrees of freedom such as electronic spins embedded in levitated
nanodiamonds [55].

1.3 This work

While the removal of the clamping mechanism enables levitated particle
systems to reach extreme isolation from thermal dissipation, coherence times
of the prepared motional states are limited by excessive backaction noise
imposed by the measurement process. The measurement cannot be avoided so
long as the trapped particle continuously scatters light of the confining laser
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which reveals information about the particle’s position that is encoded in the
phase of the radiation. However, once the state is prepared, the measurement
is not required for coherent evolution which limits experimental protocols
following the preparation of the motional ground state.

The degree to which the backaction process can be controlled in levitated
optomechanics without turning off the trapping light has not yet been fully
explored. Recently, a recoil noise suppression method has been proposed
[56] based on illumination by squeezed light [18], enabling control over the
information encoded in particle scatter. A different method for limiting laser
recoil relies on trapping hexagonal plates instead of spheres [52]. A different
geometry of the trapped object alters its radiation pattern, thereby limiting
the solid angle in which laser recoil noise can act.

In this work, we investigate an experimental scheme to suppress position
information in scattered radiation by trapping the particle at the centre of
a spherical mirror. Under appropriate conditions, the scheme is predicted to
suppress first-order position information, thereby inhibiting the dominating
contribution to mechanical noise from photon recoil. Laser recoil noise in
an interferometer is not the property of the laser [1]. Instead, it can be
understood as a result of interference of the laser field with the vacuum field
fluctuations entering the empty port of the interferometer. In general, the
vacuum fluctuations are function of the environment [57] and it is known that
surfaces can lead to surface-induced noise larger than in free-space [58–60].
Here we show that a spherical geometry in conjunction with a standing wave
optical trapping potential can lead to a substantial reduction in mechanical
noise. This work has general implications for recoil noise reduction in a
structured environment, and may aid in search for other useful configurations.
We also present experimental results for two novel trapping geometries which
could be used to probe the suppression effect at the centre of a spherical mirror.
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The work in this thesis is organised as follows:

• Chapter 2: Introduction to the necessary theoretical tools and results
used in the remainder of the thesis.

• Chapter 3: Theoretical study of the minimal measurement imprecision
in an interferometric measurement of a particle’s position, that is
trapped in a standing wave at the centre of a spherical mirror. We find
a condition necessary for suppression of first order position information
and then compute the corresponding measurement backaction. We find
that suppression of position information corresponds to inhibition of the
dominating contribution of backaction to mechanical noise, satisfying
the Heisenberg limit of detection.

• Chapter 4: Theoretical and experimental investigation of the spherical
mirror angled reflection trap (SMART) as a platform for demonstration
of the suppression effect. We study the unique feature of the SMART
geometry, in which the appearance of an optical lattice trap site at the
centre of the spherical mirror is coincident with the suppression condition
found in the previous chapter. We present the experimental setup built
during the project, and characterise the trap using experimental results.
A simple theoretical model is also developed for position detection, which
captures the unique spectral lineshapes acquired in the experiment.

• Chapter 5: A study of the standing wave interference fibre trap
(SWIFT) as an alternative trapping geometry. We investigate the
trap characterisation, the features of the optical potential and discuss
experimental progress in its realisation. The study includes numerical
analysis of particle detection on the optical fibres and trapping conditions.
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Theoretical background

Neutral nanoparticles are composed of many atoms and the associated charges.
When the dimensions of this composite object are small compared with the
wavelength of the illuminating laser light, to a good approximation the whole
object interacts only with the field at its CM via its spatially-averaged dipole
moment [13]. In this dipole approximation, the motion and emission of the
nanoparticle illuminated by laser light can be modelled as that of a point-
like dipole. In this chapter, we use this point-dipole model to introduce the
theoretical language used to describe optical trapping forces and emission near
boundaries of levitated nanoparticles. In addition, we briefly introduce the
model of the trapped particle dynamics.

2.1 Dipole emission fields
Green’s functions are solutions to inhomogeneous differential equations with
the inhomogeneity given by a delta function. In homogeneous space, a point
like dipole gives a singular inhomogeneity in the Helmholtz equation. Fields
radiated by a point-like dipole are determined by the dyadic Green’s function
G; a tensor of rank two which solves the equation, [13]

∇ × ∇ × G(r, r0) − k2G(r, r0) = Iδ(r − r0) (2.1)
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with wavenumber k = ω/c, unit dyad I, source position r0 and observation
point r. The Green’s function G is dyadic since each orientation of the dipole
moment p gives rise to a different three-dimensional vector field. Hence, each
column of G represents dipole emission field components from a dipole moment
oriented along a different orthogonal axis. For a harmonically driven dipole
p(t) = Re [p exp(−iωt)] located at r0, the complex amplitude of the electric
field of dipole emission is given by,

E(r) = k2

ϵϵ0
G(r, r0)p (2.2)

In free space, the solution for the Green’s function is, [13]

G0(r, r0) =
[
I + 1

k2 ∇∇
] exp(ikr′)

4πr′
(2.3)

where we wrote r′ = |r − r0| and a direct product of two vectors corresponds
to a dyadic product. In this thesis, we will be concerned with the free-space
dipole emission fields evaluated far from the source position (r′ ≫ λ). In the
far-field, Green’s function terms scaling as (kr′)−3 and (kr′)−2 add a negligible
contribution. Because of this, in the subsequent calculations we will make
particular use of the part of G0 which scales as (r′)−1,

Gff(r, r0) = exp(ikr′)
4πr′

[
I − r′r′

(r′)2

]
(2.4)

which is associated with far-field emission.

2.2 Dipole scattering rate near boundaries
The scattering rate of a point dipole emitter depends on its environment. This
is easy to see by considering Poynting’s theorem in the time-average where, [13]

⟨P ⟩ = 1
2

∫
∂V

Re [E∗ × H] · n dA = −1
2

∫
V

Re [j∗ · E] dV, (2.5)
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which is a statement of energy conservation; total rate of energy transfer
through surface ∂V is equal to the total rate of energy dissipation by the
current density inside ∂V in the presence of field E. When the current density
is that of a point current located at r0, j(r) = −iωpδ(r − r0), the right-hand
side of (2.5) simplifies to, [13]

⟨P ⟩ = 6πP0

k
np · Im

[
G(r0, r0)

]
· np (2.6)

where we introduced the dipole orientation np and the free-space scattering
rate P0 = |p|2k4/(12πϵ0c). The scattering rate depends on the Green’s
function with the observation point evaluated at the position of the dipole.
When in free-space np ·G0(r0, r0) ·np = ik/6π, and the scattering rate reduces
to ⟨P ⟩ = P0. However, the Green’s function in general is a function of the
environment and is therefore subject to change. In this way surrounding
boundaries can be used to either enhance or suppress the emission rate of a
point-dipole relative to free-space emission. The exact details depend on the
geometry and material response functions of the surrounding boundaries.

For a classical emitter, modification of the scattering rate can be viewed
as due to interference of dipole emission field with its own reflection. In this
picture, the particle is seen as a point dipole antenna driven by an external
field. The oscillation of the current within the dipole generates the dipole
emission field. The same field however, acts against the oscillating current
inside the dipole which leads to energy dissipation at a rate equal to the
scattering rate. When reflecting boundaries are present, the dipole current
not only interacts with the driving field but also with the dipole field which
has been reflected by the environment. The reflection provides an extra driving
force for the dipole current, which modifies the rate of energy dissipation.

The physical significance of the quantity Im
[
G
]

evaluated at the position of
the source goes beyond the rate of emission by a classical emitter. The mutable
character of radiative emission was originally demonstrated by Purcell in 1946
[61], who observed enhancement of emission in nuclear magnetic moment
transitions coupled to a resonant circuit. This was later demonstrated in many
physical configurations: spontaneous emission enhancement by Drexhage et
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al. [62] for Eu+3 ions near a silver mirror, Goy et al. for atoms in a cavity
[63], and inhibition by Kleppner [64] and others [65, 66]. This environmental
dependence is expressed theoretically within Fermi’s golden rule [67], which
states that the rate of transition of a radiative emitter is proportional to the
local density of optical states (LDOS). This density computes a spectral sum
over the available optical mode frequencies ωn, weighted by the local coupling
of the optical mode amplitudes En to the dipole orientation np. The LDOS is
a quantity directly connected to Im

[
G
]

[68]. In the weak coupling regime of
atom-field interactions, it can be shown that the QED treatment of emission
rate by a quantum emitter is in agreement with results derived using classical
electromagnetism for a classical antenna [13,68]. In recent years, enhancement
factors of order ∼ 101 − 102 have been observed [69–71]. The field of study
concerning the tailoring of the optical environment of quantum emitters and
nanostructures currently enjoys a great amount of interest, due to its various
applications in optics and nanophotonics [71, 72] and possibility of complete
inhibition of spontaneous emission in a 3D photonic bandgap [73–75].

Electromagnetic boundaries alter the modes available in the system, and
therefore modify the scattering rate. Modification of the density of states
fundamentally alters the properties of vacuum fluctuations [57], which is used
to explain other phenomena in various settings [76, 77], such as dispersion
forces [78], Casimir interactions [59] and surfaced-induced heating in levitated
optomechanics [60].

2.3 Spherical mirror Green’s function

In a situation where a dipolar scatter is illuminated by an incident field E0,
we can always write the total field at any point as the sum of the incident
and scattered fields E = E0 + Es. When boundaries are present, the scattered
fields in the same medium as the scatterer are a sum of free-space scatter
and field reflected from the boundary Es = E0

s + Er. Since each column of
the dyadic Green’s function G quantifies the three-dimensional electric field
vector of dipole emission Es for different orthogonal dipole orientations, The

2.3. Spherical mirror Green’s function 29



Chapter 2. Theoretical background

Figure 2.1: Diagram depicting the geometry of the studied system - a particle with induced dipole
moment p at position r0 near a spherical mirror of radius rm = |rm| spanning an angle θm. The
mirror is characterised by a complex reflectivity coefficient ρ

Green’s function can be decomposed similarly as,

G(r, r0) = G0(r, r0) + Gs(r, r0) (2.7)

where the first term corresponds to free-space emission, and the second term
corresponds to the reflected field and depends on the boundary. Throughout
this thesis, we will consider the system shown in figure 2.1, with the dipole
emitter scattering at or near the centre of a spherical mirror. To find Gs at
the location of the particle, we first need to model reflection of dipole emission
from the mirror surface. This problem is greatly simplified when the spherical
mirror radius is large (rm ≫ λ). In this case, only the far-fields from the
scatter reach the mirror, and hence only the far-field component of the dyadic
Green’s function shown in equation (2.4) contributes to reflection.

For a large mirror, its surface is locally flat at every point on the wavelength
scale. We take the origin of the coordinate system to coincide with the centre
of the spherical mirror. Assuming that |r0| ≪ |r| where r is a vector to an
observation point on the mirror surface, we can approximate r̂′ = (r−r0)/|r−
r0| on the mirror surface as radial from the origin r̂′ ≈ r/|r| = r̂. Since
the displacement is much smaller than the mirror radius, the wavevector of
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the dipole field at the mirror is approximately normal at the mirror surface.
Therefore, at every point, a plane-wave is at normal incidence to a plane
surface, and the field upon reflection becomes,

Gs(r, r0) = ρ Gff(r, r0) (2.8)

where ρ is the Fresnel reflection coefficient at normal incidence between the
mirror and the vacuum [79]. The spherical mirror acts like a lens and focuses
the reflected fields back towards the origin. With the reflected field known on
a spherical surface in the far-field, the focused reflected field at position s near
the origin can expressed using angular spectrum representation as, [13,80]

Gs(s, r0, ω) = −ρikrme
ikrm

2π

∫
M

Gff(r, r0, ω)e−ikr̂·sdΩ (2.9)

with k = ω/c and M integration runs over the solid angle of the fields being
focused, which in this case is the mirror surface. Equation (2.9) is valid since
Gs is evaluated far from the mirror surface, hence evanescent wave components
of the reflected field do not contribute. In the analysis of backaction noise at
the centre of a spherical mirror we will use equation (2.9) expressed in terms
of the free-space radiation pattern. For dipole orientation np, the free-space
radiation pattern is given by,

ρp(θ, ϕ) = 3
8π (1 − (r̂ · np)2) (2.10)

where r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). This allows us to express the element
of the Green’s function in equation (2.9) as,

np · Gs(s, r0, ω) · np = −ρike
2ikrm

3π

∫
M
e−ikr̂·(s+r0)ρp(θ, ϕ)dΩ. (2.11)

We can use these expressions for Gs to find the how the scattered power
changes with the mirror radius. Assuming the case of perfect reflection ρ =
−1 and a full hemisphere solid angle (θm = π/2), using equation (2.6) with
s = r0 = (0, 0, 0), we find the expression for the total scattered power,

⟨P ⟩ = 2 cos2(krm)P0 (2.12)
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Figure 2.2: Contour plot of the modified scattered power, expressed as a ratio with the free space
scattering rate P/P0, evaluated at the mirror radius condition krm = nπ.

independent of dipole orientation. The result is consistent with the modified
rate of spontaneous emission of an atom at the centre of a hemispherical mirror
[81]. It shows that for the condition krm = nπ±π/2 the emission can be fully
suppressed for a dipole positioned at the mirror centre. On the other hand, at
krm = nπ the dipole is predicted to radiate twice as much power. However, as
in the case of a hemispherical mirror only half of the solid angle is exposed, the
dipole radiates four times as much power along any angular element. In figure
2.2 we consider the total scattered power at krm = nπ for a dipole displaced
from the mirror centre by numerically solving the angular integral in (2.9) with
the observation point evaluated at the position of the particle s = r0. In the
next section, we consider the same situation by instead analysing the emission
in the far-field.
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0 z > 0z < 0

Ẽ(kx, ky) E+(r)E−(r)
z

Figure 2.3: Angular spectrum representation lets us relate the 2-dimensional spatial Fourier
transform Ẽ(kx, ky; z = 0) to fields E− and E+ evaluated on distant xy planes. If one specifies the
direction of the wavevector component kz in each halfspace, the fields E+ and E− can be related
to each other.

2.4 Dipole emission near a spherical mirror
For use in later chapters, it will be useful to study the total far-fields of a point
dipole, when that is located at r0 near the centre of a spherical mirror. The
dipole probes the local phase of the driving field ϕ via its interaction with the
incident field E(r) = E(r)eiϕ(r) for a real amplitude E . For |r0| ≪ λ ≪ |r|, the
far-field is specified by the Green’s function Gff in equation (2.4) and can be
approximated as,

Gff(r, r0) ≈
[
eikr

4πr

(
I − rr

r2

)]
e−ikr̂·r0 = G(r,0)e−ikr̂·r0 (2.13)

where 0 denotes the origin. In equation (2.13) we have expanded r′ = |r − r0|
to zeroth order in source position r′ ≈ r for the amplitude and to first order
for the phase r′ ≈ r − r̂ · r0. The dipole field for a particle at r0 can then be
written as, [82]

Es(r, r0) = Es(r)eiϕ(r0)e−ikr̂·r0 (2.14)

where Es with one position argument is the dipole emission with the
dipole located at the origin. Note that we implicitly assumed harmonic
time-dependence.

We are interested in computing the sum of equation (2.14) and its reflection
from the spherical mirror at some point rd pointing away from the mirror where
|rd| ≫ λ. One could use equation (2.9) to compute the reflected field at rd but
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it is simpler to relate the field at rd to the corresponding far-field on the mirror
surface. This relationship exists because the angular spectrum representation
allows us to relate the Fourier transform of a field on a plane to the field on
another distant plane [13, 80]. This relationship ought to match on a plane
which connects a positive and a negative halfspace (see figure 2.3 and the
appendix section A.2). If the wavevector component kz < 0 for both z < 0
and z > 0, then it can be shown that,

E−(r) = −E+(−r)e2ikr (2.15)

for large r. Equation (2.15) shows that fields of a propagating beam map along
antipodes with a π phase shift. One example of this is the limiting value for
the Gouy phase shift of a Gaussian beam,

∆ϕ = lim
z→∞

(ϕ(z) − ϕ(−z))

= lim
z→∞

(
2kz + arctan

(
z

zR

)
− arctan

(
− z

zR

))
= 2kz + π.

(2.16)

Phase shifts such as the Gouy shift are a general property of propagating
fields [83] and the reflection of the dipole emission from the spherical mirror
also experiences it, because the field propagates in the same direction in both
half-spaces.

We now apply the result in equation (2.15) to the problem of finding the
dipole emission reflected from the mirror to point rd. Since the fields map
along antipodes, we find that,

Gs(rd, r0) = −rm

rd

eik(rm+rd)Gs(rm, r0) (2.17)

where rm = −(rm/rd)rd. Under the retroreflection approximation, the
reflected field on the mirror surface at point r is simply given by the far-field
part of the free-space Green’s function,

Gs(r, r0) = ρ Gff(r, r0) = ρ Gff(−r,−r0) (2.18)
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−r0

rm

z

r0

rd

Figure 2.4: For small displacements light is approximately retroreflected, and the reflection from
mirror surface maps to the other halfspace along antipodes (black dotted line). The change in phase
of the outgoing scatter and its reflection is indicated by the optical path of the coloured arrows.
The resulting image of the reflection appears as if it came from a source at −r0.

where ρ is the Fresnel reflection at normal incidence (ρ = −1 for a perfect
reflector) and in the second equality we used the symmetry property of Gff.
Using this result and equation (2.17) we can express the Green’s function of
the reflected field at rd as,

Gs(rd, r0) = −ρrm

rd

eik(rm+rd)Gff((rm/rd)rd,−r0)

= −ρe2ikrmGff(rd,−r0)
(2.19)

We see in the second line of equation (2.19) that the image of the reflected
field at rd appears as if it came from a source at −r0 with a phase shift (see
figure 2.4). Finally, adding the scattered field in (2.14) and its reflection in
(2.19) results in the total field,

Etot(rd) = Es(rd)eiϕ(r0)
(
e−ikr̂·r0 − ρeik(r̂·r0+2rm)

)
(2.20)

where we also used (2.14) to express the mirror reflection in terms of free-space
dipole emission from the source at the origin, in this case with |r − (−r0)| ≈
r+ r̂ · r0 since the source appears to be at located at −r0. Note however, that
the local phase ϕ(r0) is the same for both free-space scatter and its reflection
from the mirror, despite the image particle appearing at −r0. This is because
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this phase is probed by the real particle at its location, and is the property of
the incident field and not the Green’s function. As a result, the local phase is
carried as a phase offset by the reflected field. For ρ = −1, field in equation
(2.20) reduces to,

Etot(rd) = 2Es(rd)ei(krm+ϕ(r0)) cos(k[r̂ · r0 + rm]) (2.21)

The expression in equation (2.21) differs from the expression found in [84] by
π/2 in phase. The discrepancy seems to arise from the missing Gouy phase
shift of the dipole reflection in their description. With the particle at the
origin, the field is simply given by,

Etot(rd) = 2Es(rd)ei(krm+ϕ(r0)) cos(krm) (2.22)

Substituting (2.22) into the left-hand side of (2.5) gives ⟨P ⟩ = 2 cos(krm)2P0

in agreement with equation (2.12) found in the previous section.
At krm = nπ, (2.21) becomes independent of particle position to first order

and for small displacements the particle appears to have a free-space radiation
pattern. If the driving field is formed using counter-propagating beams, the
local phase would appear in the amplitude. For example, in a standing wave
formed with two counter-propagating plane waves along x̂, dipole emission
would take the form,

Etot(rd) = 2Es(rd)eikrm cos(kx0) cos(k[r̂ · r0 + rm]). (2.23)

An expression of similar form will be used in the calculation of measurement
imprecision in the next chapter.

2.5 Nanoparticle optical trapping
The force on a point dipole with dipole moment p interacting with incident
fields E and B is given by, [13]

F ≈
∑

i

pi∇Ei + d

dt
[p × B] . (2.24)
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Assuming harmonic time dependence of the fields, in the time-average the
force becomes, [13]

⟨F⟩ = 1
2
∑

i

Re [p∗
i ∇Ei] (2.25)

where pi and Ei in the above are the complex amplitudes associated with the
dipole moment and the incident field respectively.

Lasers focused by an objective lens with a low numerical aperture or
radiating from an end-facet of an optical fibre are well described within the
paraxial approximation (small angle) by a Gaussian beam E = E(r) exp(iϕ(r))
where, [85]

E(r) = E0
w0

w(z) exp
(

−x2 + y2

w(z)2

)

ϕ(r) = k

(
z + x2 + y2

2R(z)

)
− ψ(z)

(2.26)

and,

w(z) = w0

√
1 +

(
z

zR

)2
(Beam waist)

R(z) = z + z2
R

z
(Beam radius of curvature)

ψ(z) = arctan
(
z

zR

)
(Gouy phase shift)

(2.27)

specified by the minimum waist w0 at beam focus and the Rayleigh range
zR = πw2

0/λ at wavelength λ. For a field of the form E = E(r) exp(iϕ(r))
together with the generally valid linear relationship p = α(ω)E, equation
(2.25) can be rewritten as, [79]

⟨F⟩ = 1
4Re [α] ∇E(r)2 + 1

2Im [α] E(r)2∇ϕ(r) (2.28)

with complex polarisability α. Averaging of fields over a small dielectric sphere
of radius rp in vacuum allows to obtain the polarisability using the Claussius-
Mossotti relation, [79]

α = 4πr3
pϵ0

ϵ− 1
ϵ+ 2

(2.29)
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where ϵ0 is the permittivity of free space, relating the polarisability to the
dielectric constant ϵ of the bulk material which makes up the sphere. Silica
nanoparticles are typically used due to its low absorption at wavelengths used
for trapping (1064 nm and 1550 nm). At these wavelengths, silica is non-
dispersive and the dielectric constant takes the value ϵ ≈ 2.25 which makes
α a real quantity. The imaginary part of the polarisability is associated with
dissipation such as internal heating. Although silica has low absorption, its
polarisability has to be supplemented with an additional term αeff ≈ α +
ik3α2/6πϵ0 for wavenumber k = 2π/λ. This second term arises due to dipole’s
self emission fields within the particle which act against the oscillation of the
dipole moment, leading to dissipation [13,86].

The first term in (2.28) is the optical gradient force which acts towards the
region of highest intensity and the second scattering force term acts in the
direction of changing phase. In a Gaussian beam, the gradient force gives rise
to a restoring force used for trapping at the beam focus. In the context of
optical tweezer trapping, the scattering force term can push the particle out
of the trap, hence the trapping stability is determined by specific particle and
beam parameters which render the scattering force negligible. In a single beam,
the stability is limited by particle size and requires high numerical apertures of
the focusing objective [37]. In addition, accurate modelling of beams generated
by tightly focusing objectives require a more involved treatment using the
angular spectrum representation [13]. However, in this thesis we will be
primarily concerned with weakly-focused counter-propagating beam traps for
which the Gaussian beam model is sufficient. Assuming that the counter-
propagating beams are well spatially matched, the scattering force cancels out
and the optical force near the focus becomes,

⟨F⟩sw ≈ Re [α] ∇E(r)2 cos(Akz)2 (2.30)

with A ≈ 1−1/kzR, [82] and for which we can write down the optical potential,

Usw = −Re [α] E(r)2 cos(Akz)2 (2.31)

which gives a periodic optical potential (see figure 4.4). Since the scattering
force does not destabilise the trap, the potential in equation (2.31) allows
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trapping of large particles near the limit of the dipole approximation validity.
However, this is highly dependent on beam alignment.

2.6 Particle dynamics
The CM position of a particle trapped in the optical potential given in equation
(2.31) behaves as a harmonic oscillator. For small displacement about the
trap equilibrium position, the dynamics of displacement components
xi along orthogonal axes are independent, with mechanical frequencies
Ωi ≈

√
−∂2

i Usw/m evaluated about the trap centre for particle of mass m.
The particle is always in contact with a thermal bath, such as residual gas
in a vacuum chamber. The bath acts upon the particle with a stochastic
stationary white noise force Fth(t) and the corresponding mechanical damping
γ, linked together by fluctuation-dissipation theorem,

⟨Fth(t)Fth(t′)⟩ = 2mγkBTδ(t− t′) (2.32)

where m, kB and T are the particle mass, Boltzmann constant and the thermal
equilibrium temperature respectively. In the case of residual gas, the force
corresponds to recoil kicks due to random collisions with gas particles while γ
gives rise to damping due to motion in a viscous fluid. The CM dynamics are
then well described by the Langevin equation,

ẍi(t) + γẋi(t) + Ω2
ix(t) = 1

m
Fth(t) (2.33)

along each direction. We will numerically simulate particle trajectories using
(2.33) to test trap stability and the motion detection signal in our experimental
configurations.

The fluctuating force in (2.33) can kick the particle out of the trap. The
potential trap depth and the thermal equilibrium energy give us a measure
of trap stability; a trap depth several factors larger than kBT is necessary for
long-term trapping. The trap depth is proportional to the local intensity of the
incident laser. In single beam traps, large trap depths are achieved with tightly
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focused beams. In standing wave traps, larger beam powers can compensate
for weak focusing, with the additional advantage of being able to trap larger
particles, since the potential scales with α ∝ r3

p. In the setup discussed in
chapter 4, we were able to trap 300 nm silica particles in a standing wave trap
with an estimated trap depth of −Usw/kB ∼ 105 K.

In frequency domain, equation (2.33) takes the form,

x̃i(ω) = χ̃i(ω)F̃th(ω) (2.34)

where χ̃i(ω) = (m[Ω2
i − ω2 − iγω])−1 is the mechanical response function. We

define the spectral density of x̃i(ω),

Sii(ω) =
∫

⟨x̃i(ω)x̃∗
i (ω′)⟩ dω′ (2.35)

which quantifies how much a specified frequency ω contributes to the spread
of x̃i. Substituting (2.34), we can express the position spread in terms of the
spectral density of the force noise fluctuations,

Sii(ω) = |χ̃i(ω)|2SF (2.36)

with a flat force noise spectral density SF , where we used the fact that the
force Fth was assumed to be a stationary process, hence having uncorrelated
spectral components

〈
F̃th(ω)F̃th(ω′)∗

〉
= SF δ(ω − ω′) [13]. Equation (2.36)

quantifies the mechanical noise on the trapped particle in terms of the force
fluctuations it receives from environmental sources.

For typical optical traps in an evacuated environment at pressures above
about 10−7 − 10−6 mbar (see section 3.5.1) the force fluctations are dominated
by collisions with gas particles, and at thermal equilibrium we have,

Sgas
F = 2

π
mkBTγgas (2.37)

At pressures below 1 mbar, gas damping is proportional to the gas pressure
[37], therefore reducing the pressure can minimise the amount of mechanical
noise added by the gas. At low enough pressures, the gas contribution no
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longer dominates and the mechanical noise is fundamentally dominated by
measurement backaction1 - recoil noise due to scattering of laser light. In
this case the force fluctuations are in balance with radiation damping [87],
with the equilibrium temperature proportional to the trapping light photon
energy ℏω0/kB. The force fluctuations of laser recoil can be understood to
arise as a result of interference of the trapping laser light with local, zero-
point or thermal, field fluctuations δE [59, 88]. The fluctuations in the fields
and the resulting force can be captured within a classical model by employing
a stochastic process description of the field and a macroscopic description of
the surrounding matter [13]. The fluctuation-dissipation theorem for these
field fluctuations at equilibrium with temperature T states that the spectral
field correlations are proportional to the dissipation of the fields by a point
current,

〈
δẼi(r, ω)δẼ∗

i (r, ω′)
〉

= ℏω2

2πc2ϵ0
coth

(
ℏω

2kBT

)
Im [Gii(r, r, ω)] δ(ω − ω′)

(2.38)
which as discussed before depends on the environment. Modelling the
fluctuations in this fashion was used to model surface-induced heating in
levitated optomechanics [59, 60]. It is frequently stated in literature that
mechanical noise due to measurement backaction is unavoidable, as the
scattered light which carries information about particle position encoded in
its phase necessarily leads to recoil. This is true in free-space and in most
cases also near boundaries. However, in the next chapter we show that a
highly reflective boundary with a suitable geometry in combination with a
standing wave trapping configuration can lead to a significant reduction in
the mechanical noise added by recoil, while the particle continues to scatter
laser light.

1Other noise sources also contribute and can dominate mechanical noise, such as laser intensity
noise or laser phase noise in standing wave traps. However, these sources of noise can be mitigated
by feedback cooling particle motion and by frequency stabilisation techniques, respectively. We
discuss these in more detail in the next chapter.
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Backaction suppression in
a structured environment

Precision in the continuous measurement of an optical sensor is fundamentally
limited by photon recoil noise [1], with the fundamental limit given by
the standard quantum limit [3, 7]. Attempting to resolve the position of
the levitated particle further by increasing illuminating power, irrevocably
increases momentum fluctuations received in the form of force fluctuations
from the laser field [38]. Under optimal illuminating power, which yields the
minimum achievable noise in a continuous position measurement, fluctuations
in the signal due to measurement imprecision and measurement backaction
contribute equally. One can always make a trade-off between imprecision
and backaction by changing the illuminating power, but it is also possible by
employing squeezed light [18], which allows suppression of laser recoil noise
and measurements beyond what is achievable under the standard quantum
limit [16, 56].

Trapping near surfaces affects heating of particle motion [58–60]. Apart
from the surface material, the heating also strongly depends on the surface
geometry [57]. In this chapter, we investigate how the presence of a large
spherical mirror affects position detection of a trapped nanoparticle and
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the corresponding mechanical noise from backaction. The spherical mirror
geometry was previously found to strongly modify the local density of
optical states at its centre [81] allowing for full suppression of spontaneous
emission from an atom. There is current experimental interest in studying
QED effects of the hemisphere using trapped ions [89]. In the context of
levitated optomechanics, optimal position measurement of a particle trapped
at the centre of a spherical mirror was recently analysed [84] and realised in
experiment using a focusing lens and a plane mirror [90]. The authors show
that the spherical mirror, under appropriate condition on its radius, can be
used to realise an ideal reference field for self-homodyne detection and is able
to reach the Heisenberg limit of detection by observation from only half of
the solid angle. A similar setup was also recently proposed for the purpose of
backaction suppression [91].

In the following sections, we explore the utility of the hemispherical
geometry in concealing first-order position information in an experimentally
controllable fashion. In contrast to the findings presented in the recent
paper [91], we find that suppression of scattered power does not correspond
to the suppression of backaction. Instead, we find that the linear position
read-out becomes inaccessible in an interferometric measurement of the far-
field scatter when the scattered power is maximally enhanced by the spherical
mirror and only in a standing wave trapping potential. Using a stochastic
electrodynamics description of the local zero-point field fluctuations, we then
compute the local optical force fluctuations on a point dipole, accounting
for the presence of the mirror. Under the same conditions which render the
signal insensitive to first-order motion, the dominating term in the noise
spectral density of the force fluctuations vanishes. While the hemispherical
geometry facilitates suppression of field gradient fluctuations, a standing
wave trapping configuration is necessary to suppress residual field amplitude
fluctuations. We show that the results found satisfy the Heisenberg limit of
position detection, and therefore constitute a trade-off between measurement
imprecision and backaction without altering the illuminating laser power.
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rm≫ λ

E0

θm

rd

Detector

dΩ

z

y

r0

Particle

Figure 3.1: Spherical mirror trapping configuration. A laser beam polarised out of the page is
focused close to the centre of the spherical mirror, such that the beam retroreflects from the mirror
surface and generates a standing wave trap. A particle is trapped at the central maximum. The
remaining available solid angle not covered by the spherical mirror is used for position detection on
differential detectors each covering a solid angle dΩ

3.1 Problem statement
We focus the study on two aspects of the position detection process in the
subsequent sections:

• measurement imprecision which dictates the amount of particle
position information gained from the detected scatter signal

• measurement backaction which quantifies the amount of mechanical
noise imparted on the particle by the measuring field

We begin the analysis in this chapter by computing achievable measurement
imprecision in an ideal position detection experiment of a particle trapped in
a standing wave field in front of a spherical mirror. To do this, we follow the
treatment presented in [92] based on the flow of Fisher information flux. We
frame the discussion in terms of homodyne detection experiment of a particle
trapped in a standing wave near the centre of a hemispherical mirror. The
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setup which realises the optimal measurement scheme of the position detection
experiment is depicted in figure 3.1. The particle motion is observed on an
array of detectors in the far-field. Assuming that the detectors are shot-noise
limited, it can be shown that this is an optimal way to localise the particle
from far-field observation [82,84,93], as it allows one to localise the particle to
the Heisenberg limit of detection. [3, 92,94].

Throughout this analysis, we work in the quasistatic limit, ignoring any
effects the motion has on the imprecision-backaction characteristics. Assuming
that the mirror is not too large, this is considered permissible since the particle
motion is significantly slower than time delay of the mirror-particle round
trip. The considered particle is modelled as a point dipole (radius rp ≪ λ)
with isotropic polarisability α. Due to its interaction with the laser light, the
dynamics of the particle are described by the Langevin equation ẍi(t)+γẋi(t)+
Ω2

ixi(t) = δFi/m, where γ and Ωi are the mechanical damping and the trap
frequency, respectively. The term δFi is a component of a stochastic force δF
which acts on the particle due to the thermal bath and laser recoil. We assume
that we can ignore the contribution of residual gas and the force fluctuations
are dominated by the contribution from laser recoil. The particle is located
at r0 = rt + δr, where rt is the equilibrium position of the trap centre and
|δr| ≪ λ is the displacement due to the motion about the trap centre. For the
majority of this chapter, we take rt to coincide with the hemisphere centre,
and the centre of the coordinate system. Later, we consider the situation of
the trap centre displaced along mirror axis.

The beam is incident upon the mirror surface and forms a standing wave
trap. We assume that the beam parameters are selected such that the beam is
retroreflected and an intensity maximum appears at the mirror centre (see
section 4.1 for details). The particle is trapped in the central maximum
of the standing wave. Assuming that the beam is weakly-focused and the
central maximum is sufficiently close to the beam waist, the standing wave
field E0(r, t) = Re [E0(r)e−iω0t] resembles a field of two counter-propagating
plane waves, [82]

E0(r) = E0 cos(Ak0z)x̂ (3.1)
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In equation (3.1), k0 = 2π/λ is the free-space wavenumber of the laser beam
and the Gouy factor A arises due to the spatial confinement of the field and
increases the effective wavelength, depending on the degree of focusing.

In the subsequent section, we extend the analysis to measurement
backaction by employing a stochastic electrodynamics description of the
local field fluctuations, [88, 93, 95, 96] and computing the spectral noise
density of the recoil force, in free space and in a standing wave formed by
reflection from a spherical mirror. For a particle trapped in free space, we
recover known expressions for laser recoil noise, [38, 82] showing how the
different contributions arise as a result of the trapping field coupling to the
background field gradient fluctuations, and trapping field gradient coupling to
the background field at the same frequency as the trapping light. In the final
section, we discuss the result with its implications and analyse the residual
noise in a possible experimental demonstration.

3.2 Measurement imprecision

To realise the ideal measurement scheme, we envision measuring the particle
position r0 by observing the field which it scatters using an array of detectors
each spanning a solid angle dΩ, over the total solid angle not covered by
the spherical mirror, as shown in figure 3.1. In front of a spherical mirror,
particle position is encoded in the intensity modulation of the sum of the
dipole emission field and its reflection. The reflection of the scatter from the
mirror serves as a moving reference field [84]. Using equation (2.20), we can
express the far-field of the dipole emission in front of a reflecting spherical
mirror with reflection coefficient |ρ| = 1 driven by (3.1) as,

Etot(rd) = Es(rd) cos(Ak0z0)(e−ik0r̂·r0 − ρeik0(r̂·r0+2rm)) (3.2)

where Es is the free-space dipole emission field. The corresponding differential
power dP = ⟨S⟩ · r̂ dA incident upon a detector spanning a solid angle dΩ with
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Poynting vector ⟨S⟩ = (1/2)(Etot × H∗
tot) is found to be,1

dP = 2 cos2(Ak0z0)(1 − Re
[
ρe2ik0rm

]
) dP0

dP0 = P0ρx(θ, ϕ) dΩ
(3.3)

where P0 is the free-space scattered power and ρx is the radiation pattern of an
x̂ polarised dipole. Observation of (3.3) realises the self-homodyne detection
scheme of [84] for an appropriate choice of mirror radius rm.

We can formally quantify minimum measurement imprecision in far-field,
shot-noise-limited detection of particle position using the recently developed
formalism of Fisher information (FI) flow [92], which places a lower bound on
the variance in the measured quantity. Specifically, the formalism introduces
a local quantity of Fisher information flow, akin to the Poynting vector
which describes the flow of electromagnetic energy. In the time average,
the reciprocal of this quantity then places a bound on the average rate at
which the variance of a variable can be reduced in a 1 Hz bandwidth of
shot-noise-limited measurement. The treatment is equivalent to treating
the problem of interference experiment depicted in figure 3.1 with a strong,
mode-matching reference field. In a 1 Hz bandwidth we have,

Var(xi) ≥
(

2π
∫

Si
FI · r̂ dA

)−1
2π[Hz] (3.4)

where, [92]
Si

FI = 2
ℏω0

Re [∂iEtot × ∂iH∗
tot] (3.5)

defines the time-averaged FI flux with ∂i ≡ ∂/∂xi, and the quantity in
parentheses in equation (3.4) corresponds to the flat spectral density of
minimum imprecision noise,

Si
imp =

(
2π
∫

Si
FI · r̂ dA

)−1
(3.6)

1dP0 represents the differential power radiated by an x̂ oriented dipole into the solid angle
element dΩ.
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in the measurement of xi. To obtain an optimal estimate of the particle’s
position for general mirror spanning angle θm (see figure 3.1), we need to find
Si

FI in each angular domain over the element dA = r2
d dΩ, as depicted in figure

3.2. To begin with, we consider domain (b) which corresponds to free-space
dipole emission. In a standing wave, the electric field of emission in (b) is
equal to, [82]

Es(rd, r0) = Es(rd) cos(Ak0z0)e−ik0r̂·r0 (3.7)

We insert (3.7) into (3.5), using the fact that in the far-field the fields are
transverse with the relationship Htot = −ϵ0cEtot × r̂ and evaluating the
derivatives about r0 = (0, 0, 0),

Si
imp

(b) =
(

4πk0ϵ0

ℏ

∫
b
r̂2

i |Es(rd)|2r2
d dΩ

)−1

(3.8)

Using Es(rd) = (k2
0/ϵ0)Gff(rd, r0)·p and the definition of the free-space far-field

dyadic Green’s function, for x̂ polarised dipole we find,

Si
imp

(b) =
(

8πk0

ℏc

∫
b
r̂2

i dP0

)−1

(3.9)

where we defined the free-space average scattered power P0 = k4
0c|p|2/(12πϵ0)

and again used dP0 = P0ρx(θ, ϕ) dΩ. When integrated over the full solid angle,
(3.9) reproduces the imprecision noise for a standing-wave field in the absence
of the mirror, [82,97]

(Sx
imp)free =

(
8πk0

ℏc

∫
4π

sin2 θ cos2 ϕ dP0

)−1

= 5 ℏc
8πk0

1
P0

(Sy
imp)free =

(
8πk0

ℏc

∫
4π

sin2 θ sin2 ϕ dP0

)−1

= 5
2

ℏc
8πk0

1
P0

(Sz
imp)free =

(
8πk0

ℏc

∫
4π

cos2 θ dP0

)−1

= 5
2

ℏc
8πk0

1
P0

(3.10)

Note that the imprecision noise in the measurement of z0 in (3.10) does not
contain the factor A (see section 3.1). Unlike in a single beam setup [82], at
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a

bb

c z

y

Figure 3.2: Diagram denoting different measurement domains. Since we assumed that |ρ| = 1,
no field gets transmitted and dipole emission is not accessible for measurement within domain (a).
Because dipole scatter is retroreflected by the mirror surface, the mirror only affects the detected
emission in domain (c). In (c), dipole emission is given by equation (3.2) and provides a self-
homodyne measurement. Domain (b) corresponds to free-space dipole emission.

a maximum of a standing wave, the local phase does not carry linear position
information. We follow the same steps to find the imprecision noise in domain
(c) using the field in (3.2) and find,

Si
imp

(c) =
(

8πk0ϵ0

ℏ
(
1 + Re

[
ρe2ik0rm

]) ∫
c
r̂2

i |Es(rd)|2 dA
)−1

=
(

16πk0

ℏc
(
1 + Re

[
ρe2ik0rm

]) ∫
c
r̂2

i dP0

)−1 (3.11)

Finally, combining measurement noise across angular domains (as specified in
figure 3.2), we arrive at the total measurement imprecision,

Si
imp = Si

imp
(b) + Si

imp
(c) (3.12)

The first term in (3.12) represents noise in domain (b) for a measurement made
under the optimal free-space scheme of [82], while the second term corresponds
to domain (c) as described above. We now proceed to analyse the result (3.12).

3.2.1 Discussion
Firstly, we focus on the limit of a full hemisphere (θm = π/2). In this case,
the domain of integration (b) in (3.12) vanishes, and only the second term
contributes to imprecision and we find,
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Figure 3.3: Measurement imprecision Si
imp against spherical mirror half angle θm found by solving

(3.12). Explicit solutions for the curves are given in B.2. Filled lines indicate variation at k0rm = nπ
and dotted lines at k0rm = nπ ± π/2. Dashed lines indicate free-space levels in a standing wave (at
θm = 0). At k0rm = nπ ± π/4 imprecision does not change from free-space levels with varying θm.

Si
imp = 5

2
ℏc

8πk0

1
P0

(1 + δixδxi)
(
1 + Re

[
ρe2ik0rm

])−1
. (3.13)

In general, Re [ρ] < 1 makes the effect of the mirror on the imprecision less
significant. We will focus on the discussion of (3.12) with ρ = −1 (perfect
reflection) at three conditions on the mirror radius,

k0rm =


nπ ± π/4 self-homodyne (l)
nπ ± π/2 scattered power suppression (s)
nπ scattered power enhancement (e)

(3.14)

for integer n. The optimal condition on mirror radius in the self-homodyne
detection scheme is (l) as noted in [84]. At condition (l) we retain twice the
free-space amount of linear information in any angular element in domain
(c), and for which (3.12) gives the same total imprecision as is achievable in
a free-space standing wave. For condition (s), equation (3.12) suggests that
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(a) Ix(θ, ϕ) (b) Iy(θ, ϕ) (c) Iz(θ, ϕ)

Figure 3.4: Angular spread of position information here normalised to the total free-space
imprecision Ii(θ, ϕ) = (Si

imp)free/ dSi
imp(θ, ϕ) from equation (3.10) . The mirror is perfectly

reflecting (ρ = −1), has its axis of symmetry along ẑ as in figure 3.1 and was chosen to have
θm = π/3. The white region corresponds to domain (c) in 3.2, in which the scatter is affected by
the mirror. The information in the white region of the top half-space is never accessible because
this portion of the solid angle is covered by the mirror. At k0rm = nπ the position information is
inaccessible in the white region of both half-spaces. The colored region corresponds to free-space
information.

half the total free-space imprecision is achievable. However, this condition
also corresponds to the full suppression of scattered power, meaning that such
reduction is likely not achievable or desirable in practice as the signal would
be vanishingly small.

We now turn to the discussion of measurement noise at condition (e). At
(e), the total scattered power is enhanced by a factor of 2 relative to free-
space, but measurement noise in (3.12) diverges, suggesting that the signal
contains no linear position information. Indeed, no mode-matching reference
can be added to (3.2) to obtain a linear position signal since at (e), the dipole
emission is equal to,

Etot(rd) ≈ 2Es(rd) (3.15)

to first order in r0; the free-space particle radiation away from the mirror is
in phase with its image, making it impossible to distinguish between them to
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first order.
Lastly, we discuss the variation of (3.12) with mirror polar angle θm. Figure

3.3 shows that at condition (e), (Simp
zz )−1 decreases faster with θm than (Simp

xx )−1

and (Simp
yy )−1.

We can gain more insight into this result by analysing the angular
distribution of radiated position information, quantified by the normalised
integrand of equation (3.12). The resulting plots are shown in figure 3.4 for a
mirror with an illustrative spanning angle of θm = π/3. Firstly, we note that
the shapes of Ii are unchanged by the mirror compared with the spread of
information in free space [82],2 because the radiation pattern for a particle
located near the mirror centre is unchanged to linear order. However, the
information content changes discontinuously between the angular domain
affected by the mirror (domain (a) and (c) in figure 3.2) and the unaffected
domain (domain (b) in figure 3.2). At k0rm = nπ information in the white
regions of figure 3.4 is inaccessible. Because of the mirror’s orientation, the
information is symmetrically affected about the ẑ axis. This causes (Simp

zz )−1

to decrease faster with θm, since Iz is more tightly concentrated about the ẑ
axis. In the next section we explore the same situation from the standpoint
of measurement backaction in attempt to gain further insight in the results
found for the solutions to (3.12).

2Note that Iz appears symmetric unlike in [82] because in a standing wave the A focusing factor
does not contribute to the imprecision
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3.3 Measurement backaction
In this section, we quantify the mechanical noise on a trapped particle, by
evaluating the spectral noise density of the optical force fluctuations which
acts upon it, due to the laser field and background field fluctuations.

The particle interacts with the laser field and a fluctuating background
field,

E(r0, t) = E0(r0, t) + δE(r0, t). (3.16)

In (3.16) δE is a statistically stationary process with zero average [88], and
E0 is the sum of the laser field and its reflection from the environment. In
general, the particle also interacts with reflections of its own scatter, which
lead to an infinite series of additional terms in (3.16) scaling in powers of k3α.
Since k3α ∼ (rp/λ)3 each of these terms contributes increasingly less. Since we
are interested in computing the dominating contribution to laser recoil noise,
we choose to truncate the series in α to zeroth order.3 Treating the particle
as a point oscillating dipole located at r0, the field in (3.16) induces a dipole
moment p which gives rise to a force, [79]

F(r0, t) =
∑

i

pi(t)∇Ei(r0, t) + d

dt

[
p(r0, t) × B(r0, t)

]
. (3.17)

which, when written in the frequency domain becomes,

F̃(r0, ω) =
∑

i

{
p̃i ∗ ∇Ẽi

}
(r0, ω) − iω

∑
ijk

ϵijk

{
p̃i ∗ B̃jx̂k

}
(r0, ω) (3.18)

The quantities in (3.18) with a tilde denote the respective Fourier transforms
(defined by (A.1)),

p̃(r0, ω) = α̃(ω)Ẽ(r0, ω)
Ẽ(r0, ω) = Ẽ0(r0, ω) + δẼ(r0, ω).

(3.19)

3The first order of these terms is imaginary, and it is usually absorbed into the definition of
free-space polarisability [13, 98]. Because of the omission of it made here, the average scattering
force will be missing from (3.20). It is equivalent to ignoring the influence of the dipole emission on
the force, which has a significantly smaller contribution than the incident field. Therefore, ignoring
it here does not influence the subsequent calculation of the force noise spectral density.

3.3. Measurement backaction 53



Chapter 3. Backaction suppression in a structured environment

and the symbol ∗ denotes a convolution for vectors (as defined in (A.3)).
Absence of the internal dipole moment fluctuations in p̃ of (3.19) indicates
that we have also ignored the internal heating of the particle. We will continue
to make this approximation in the calculation of the force noise by assuming
real α̃.

Note that the second force term in (3.18) is proportional to the frequency
ω. In order to evaluate the mechanical noise on the trapped particle, we
wish to evaluate the force at trap frequency. For typical optical wavelengths
and optical powers, the trap frequency is significantly smaller than the optical
frequency. For example, a fused silica nanoparticle trapped in a single 250 mW
laser beam of wavelength λ = 1550 nm focused with a NA = 0.5 lens generates
a trap with frequency of about 100 kHz orthogonal to beam propagation.
Therefore, we can assume that ω ≪ ω0 . In this regime, the contribution
of the second term is negligible. More specifically, the cross terms between
the first and second force term in the spectral density of the force have a
contribution smaller than the largest terms arising from only the first term
by a factor of (ω/ω0). Likewise, terms arising from the second term alone are
smaller by a factor of (ω/ω0)2. We therefore neglect the second force term and
proceed with the simplified expression,

F̃(r0, ω) =
∑

i

{
p̃i ∗ ∇Ẽi

}
(r0, ω)

= F̃0(r0, ω) + δF̃(r0, ω)
(3.20)

In equation (3.20) we chose F̃ to represent the deterministic force and δF̃ to
represent force fluctuations - that is, any terms containing fluctuations in the
fields up to linear order,

δF̃(r0, ω) =
{
α̃Ẽ0 ∗ ∇δẼ

}
(r0, ω) +

{
α̃δẼ ∗ ∇Ẽ0

}
(r0, ω), (3.21)

where we assumed that E0 is x̂ polarised and dropped the subscript ‘x’ from
the field components δEx and E0x for clarity. In a regime dominated by
field fluctuations, δF acts as a noisy driving force for the harmonic dynamics
generated by F0,

ẍi(t) + γẋi(t) + Ω2
ixi(t) = 1

m
δFi(t) (3.22)
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where γ is the mechanical damping and Ωi is the trap frequency along xi. In
the next sections we evaluate (3.21) for a monochromatic driving field. As
a first example consider the case of a plane-wave incident upon the particle
in free-space and recover known results for the force noise. We then use the
developed formalism to treat the problem of force noise on a particle trapped
in the setup of figure 3.1.

3.3.1 Single beam force noise in free-space

In this section we compute the spectral density of the force noise δF in (3.21) at
the location of the particle r0 evaluated at the trap frequency. Assuming force
fluctuations δF is a wide-sense stationary process, we find the corresponding
spectral density using,4 [80]

SF
ij (ω) = 1

2π

∫
R

⟨δFi(r0, t)δFj(r0, t+ τ)⟩ eiωτdτ

=
∫
R

〈
δF̃i(r0, ω)δF̃ ∗

j (r0, ω
′)
〉
dω′

(3.23)

driven by a plane-wave monochromatic field, E0(r, t) = Re
[
Ẽ0(r)e−iω0t

]
x̂.

Firstly, evaluating the Fourier transform of E0 we find,

Ẽ0(r, ω) = 1
2
(
Ẽ0(r)δ(ω − ω0) + Ẽ∗

0(r)δ(ω + ω0)
)

x̂ (3.24)

Subsituting (3.24) into (3.21) and evaluating the convolutions leads to,

δF̃(r0, ω) = 1
2 α̃(Ẽ0(r0)∇δẼ(r0, ω − ω0) + Ẽ∗

0(r0)∇δẼ(r0, ω + ω0)

+δẼ(r0, ω − ω0)∇Ẽ0(r0) + δẼ(r0, ω + ω0)∇Ẽ∗
0(r0))

(3.25)

4⟨.⟩ denotes an ensemble average over realisations of the fluctuations, or a time-average of a
sufficiently long trajectory of a single realisation.
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where we assumed that the polarisability α̃ is real5 and ignored its dispersion6,
introducing α̃ = α̃(ω0). Before we write down the correlation functions, it is
convenient at this point to rewrite the spectral density in (3.23) in tensor form,

SF (ω) =
∫
R

〈
δF̃(r0, ω)δF̃∗(r′

0, ω
′)
〉
dω′

∣∣∣∣∣
r0=r′

0

, (3.26)

where any direct product of two vectors throughout the rest of this chapter
denotes the tensor product. We now proceed to substitute (3.25) into (3.26)
and apply the fluctuation-dissipation theorem of the x̂ component of the
background field in thermal equilibrium with the environment at tempertature
T , [13, 57,88]〈

δẼ(r, ω)δẼ∗(r′, ω′)
〉

= ℏω2

2πc2ϵ0
coth

(
ℏω

2kBT

)
Im [Gxx(r, r′, ω)] δ(ω − ω′),

(3.27)
where Gxx is an element of the Green’s tensor G of the system, corresponding
to the x̂ field component of the dipole emission of an x̂ polarised point dipole.
In the zero-temperature limit (ℏω0 ≫ kBT ), the quantity coth(ℏ|ω0|/2kBT ) ≈
1 and coth(−ℏ|ω0|/2kBT ) ≈ −1, therefore positive and negative frequencies
around ω0 contribute equally with opposite signs. In this limit, subsituting
(3.25) into (3.26) with the use of (3.27), we finally arrive at an expression for
the spectral density of force fluctuations,

SF (ω) = ℏα̃2

4πc2ϵ0

∑
±

(ω ± ω0)2
[
Ẽ∗

0(r0)Ẽ0(r′
0)∇∇′ + ∇Ẽ∗

0(r0)∇′Ẽ0(r′
0)

+ Ẽ∗
0(r0)∇′Ẽ0(r′

0)∇ + Ẽ0(r′
0)∇Ẽ∗

0(r0)∇′
]
Im [Gxx(r0, r′

0, |ω ± ω0|)]r0=r′
0

(3.28)
5Measurement of the imaginary part of the polarisability of nanospheres in vacuum presents an

ongoing experimental challenge [99]. However, Im [α] can be estimated using the bulk properties
of the material [46, 59]. Based on the data reported in [46, 99] for silica at λ = 1550 nm, we can
deduce that the contribution of Im [α(ω0)] to the noise spectral density is relatively small with
Im [α] /Re [α] ∼ 10−8. We therefore choose to neglect the influence of Im [α(ω0)], and proceed with
a purely real polarisability.

6To obtain the final expression we take the limit |ω±ω0| ≈ ω0. Hence, under our approximations,
ignoring dispersion of polarsability at this point makes no difference in the final expression.
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where the sum runs over the top and bottom sign of ± and we used the fact
that Im [Gxx] is an odd function of ω. We simplify the expression further with
|ω ± ω0| ≈ ω0, which yields the final expression,

SF (ω) = ℏω2
0

4πc2ϵ0
α̃2
[
Ẽ∗

0(r0)Ẽ0(r′
0)∇∇′ + ∇Ẽ∗

0(r0)∇′Ẽ0(r′
0)

+ Ẽ∗
0(r0)∇′Ẽ0(r′

0)∇ + Ẽ0(r′
0)∇Ẽ∗

0(r0)∇′
]
Im [Gxx(r0, r′

0, ω0)]r0=r′
0

(3.29)
We therefore find that the spectral density of the noise within our
approximations depends only on the frequency of the illuminating laser.
In the above we used the fact that spectral components of the force
fluctuations at different frequencies do not correlate.

We can physically interpret the three terms in (3.29) in the following way:
the second term represents the fluctuations of the scattering force, which
depends on the spectral correlation of the field fluctuations. It is present
only for force fluctuations along the direction of the phase gradient of the
driving laser field. The first term depends on the correlation of the field
gradient fluctuations, hence we can physically intepret it with the gradient
force fluctuations. The remaining terms depend on correlations of the field
and its gradient, which can give rise to cross-correlations of different force
components. Within our approximations, our expression agrees with [59] for
a model of a particle trapped in front of a flat plane, in the framework of
macroscopic QED [60,78]. In that context, the dominant contribution to noise
arise from the driven-Casimir–Polder interaction term in the Hamiltonian of
the trapped particle dynamics. This term is a result of interference of the
classical driving field with medium-assisted vacuum fields.

We now apply (3.29) to the case of a particle illuminated by a focused laser
field (propagating along ẑ and polarised along x̂) in free-space. Assuming
that the particle is located close to the focus of the laser (|r0| ≪ λ), we
can approximate the spatial complex amplitude which describes the laser
with Ẽ0(r) = E0e

iAk0z, [82] as considered in section 3.2 in the free-space
calculation of measurement imprecision. In free-space, where the environment
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is characterised by the free-space Green’s tensor, the imaginary part of the
Green’s tensor component and its derivatives can be evaluated by taking
|r0 − r′

0| → 0, and it can be shown that, (see appendix section B.1)

Im [Gxx(r0, r0, ω)] = 1
6π

(
ω

c

)
∇Im [Gxx(r0, r′

0, ω)]r0=r′
0

= 0

∇∇′Im [Gxx(r0, r0, ω)]r0=r′
0

= 1
30π

(
2I − x̂x̂

)(ω
c

)3

(3.30)

where I is the unit dyad. Therefore, in free space the terms in (3.29) which
depend on the first derivative of Im [Gxx] vanish. Defining the free space
scattered power driven at frequency ω0, [13]

P0 = E2
0k

4
0c

12πϵ0
α̃(ω0)2. (3.31)

and using the evaluated derivatives leads to the final expression,

SF (ω) = ℏk0

2πcP0

(1
5(2I − x̂x̂) + A2ẑẑ

)
(3.32)

which is in agreement with the known free-space results, [82, 97]

SF
xx(ω) = 1

5
ℏk0

2πcP0,

SF
yy(ω) = 2

5
ℏk0

2πcP0,

SF
zz(ω) =

(2
5 + A2

) ℏk0

2πcP0,

(3.33)

and SF
ij (ω) = 0 for i ̸= j. In the next section, we turn to the problem of

computing the force noise for a particle trapped at and near the centre of a
spherical mirror.

3.3.2 Force noise in front of a spherical mirror
In this section, we consider the backaction noise for a particle trapped near
the centre of a spherical mirror as depicted in figure 3.1. Firstly, we note
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that dipole emission reflected back by the boundary acts as an extra field
which further interacts with the particle. In some situations, this field
can significantly alter the trapping potential, and in literature is known
as self-induced backaction (SIBA) (see section 4.9.1) However, based on
the analysis shown in later chapters, SIBA can always be made to have a
negligible influence on the trap equilibrium position, by appropriate choice
of beam and particle parameters. We therefore choose to ignore its influence
throughout this section.

Assuming that the beam is retroreflecting from the mirror surface with a
field maximum at the centre, the total driving field near the focus is a sum of
two counter-propagating beams, such that the complex amplitude of the total
driving field near the mirror centre where the particle is located is simply
given by Ẽ0(r) = E0 cos(Ak0z). When this expression for the incident field is
substituted into equation (3.29) we get,

SF (ω) = ℏk0

2πcP0
6π
k3

0

[
((Ak0)2 sin(Ak0z0)2ẑẑ + cos(Ak0z0)2∇∇′)Im [Gxx(r0, r′

0, ω0)]

− Ak0

2 sin(2Ak0z0)Im [∇Gxx(r0, r′
0, ω0)ẑ + ẑ∇′Gxx(r0, r′

0, ω0)]
]

r0=r′
0

.

(3.34)
In equation (3.34), the first and the last two terms do not contribute up to
second order in position. Rejecting those terms at this point allows us to
simplify the spectral density to,

SF (ω) ≈ ℏk0

2πcP0
6π
k3

0
∇∇′Im [Gxx(r0, r′

0, ω0)]r0=r′
0

(3.35)

where we find that the term corresponding to the scattering force fluctuations
does not contribute to second order. This makes sense, since the scattering
force scales with the gradient of the driving field at the particle’s position.
Expression (3.35) is in agreement with [59] for the spectral density of noise in
a standing wave in front of a plane surface.
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Let us now evaluate the spectral density of the force fluctuations, accounting
for the presence of the spherical mirror. The presence of boundaries alters
the correlations of background field fluctuations [57]. In a medium-assisted
environment, the fluctuation-dissipation theorem in (3.27) holds true, but the
Green’s function is now altered by the presence of the boundary. In (3.35),
the contribution of the boundary is encompassed in Gs that makes up the
total Green’s function G = G0 + Gs. We have already found an expression
Gs(r0, r′

0) evaluated near the origin for a large mirror (rm ≫ λ) in section 2.3.
Its derivatives can be easily evaluated since, unlike G0, Gs in equation (2.11)
is not singular for equal position arguments,

∇Gs
xx(r0, r′

0, ω0)
∣∣∣∣∣
r0=r′

0

= −ρk2 e
2ik0rm

3π

∫
M
dΩe−2ik0r̂·r0ρx(θ, ϕ)r̂,

∇∇′Gs
xx(r0, r′

0, ω0)
∣∣∣∣∣
r0=r′

0

= iρk3 e
2ik0rm

3π

∫
M
dΩe−2ik0r̂·r0ρx(θ, ϕ)r̂r̂,

(3.36)

where r̂ is the radial unit vector pointing towards the mirror surface and ρ is
the reflection coefficient with |ρ| = 1. Substituting the second derivatives into
(3.35) at r0 = (0, 0, 0) we have,

SF (ω) = ℏk0

2πc

(1
5(2I − x̂x̂)P0 + 2Re

[
ρe2ikrm

] ∫
M

r̂r̂ dP0

)
. (3.37)

where dP0 = P0ρx(θ, ϕ)dΩ is the differential power radiated into the solid angle
element dΩ. The first term corresponds to the free space result found in the
previous section for field gradient correlations, while the second term is a new
term which depends only on the boundary. It can be shown that for k0rm = nπ

the position dependence in (3.36) vanishes to second order. The configuration
of figure 3.1 studied in this section, only allows trapping of particles at mirror
centre when k0rm = nπ (see section 4.1). Note however, that the expression in
(3.37) does not depend on the direction of beam propagation. Because of this,
we find that the same expression holds for any standing wave trap polarised
along x̂, such as one propagating along the ŷ direction. Such a standing wave
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trap need not be formed with the beam reflection from the mirror, hence
the choice of k0rm is not restricted in principle. We explore one example of
such experimental configuration in chapter 5, with a fibre-based optical lattice
formed orthogonal to the mirror axis of symmetry.

Equation (3.37) can already be evaluated, but we can write it in a more
intuitive form if we write the free-space term in integral form,

1
5(2I − x̂x̂) =

∫
4π

r̂r̂ρx(θ, ϕ)dΩ (3.38)

Using the fact that the integral in (3.37) is symmetric about θ = π/2 and
introducing a unit step function Θm(θ), we can write both terms under one
integral,

SF (ω) = ℏk0

2πc

∫
4π
dP0

(
1 + Θm(θ)Re

[
ρe2ik0rm

])
r̂r̂. (3.39)

where,

Θm(θ) =
1, −θm ≤ θ < θm, π − θm ≤ θ < π + θm

0, otherwise.
(3.40)

Equation (3.39) is the main result of this section. It represents the dominating
backaction noise term. For a perfectly reflecting (ρ = −1) full hemisphere
(θm = π/2) we find,

S(ω) = ℏk0

2πcP0 ×


2
5(2I − x̂x̂) krm = nπ ± π/2
1
5(2I − x̂x̂) krm = nπ ± π/4
0 krm = nπ

(3.41)

Backaction noise is twice as large as the first free space noise term found
in (3.32) when k0rm = nπ ± π/2. On the other hand, at k0rm = nπ, the
backaction noise term vanishes7. This backaction suppression condition
coincides with the mirror radius condition needed for trapping at the

7In this case, the backaction is dominated by smaller terms which are unaccounted for in this
calculation. In a later discussion, we estimate the magnitude of the residual backaction noise.
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Figure 3.5: Backaction noise SF
ii (ω) against spherical mirror NA found by solving (3.39) with

ρ = −1. Explicit solutions for the curves are given in B.2. Filled lines indicate backaction for
k0rm = nπ while dotted lines for k0rm = nπ ± π/2. Dashed lines indicate free-space levels in a
standing wave (at θm = 0 ).

mirror centre (see section 4.1), and is also the condition yielding maximum
enhancement of scattered power (see section 2.3). In figure 3.5 we show
how backaction in (3.39) varies with mirror polar angle θm. Just like in the
case of measurement imprecision, we find that the rate at which backaction
decreases with k0rm = nπ is faster for SF

zz than for SF
xx and SF

yy. It is easy
to see by inspecting figures 3.5 and 3.3 that the shapes of the curves for the
corresponding position components are the same. Indeed, when we multiply
the solutions of (3.39) and (3.12) for varying θm (given in (B.8) and (B.6))
we find,

Si
impS

F
ii =

(
ℏ
4π

)2

(3.42)

corresponding to the Heisenberg limit [3, 82, 88].8 Equation (3.42) is valid for
8Sometimes the Heisenberg limit is quoted as ℏ2/4. [3]. The factor (2π)−2 arises from the

definition of the spectral densities in terms of angular frequencies ω = 2πf instead of f .
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Figure 3.6: Backaction noise SF
ii (ω) against displacement of the trap centre zt along mirror axis,

found by solving (3.37) to zeroth order in displacement about the trap centre. Dashed lines indicate
free-space levels. Vertical lines show stable trapping positions for weak focusing (A ≈ 1) where the
solutions to (3.37) are valid approximations to backaction.

all θm and ρ with |ρ| = 1. In contrast to a free-space system, by utilising a
spherical mirror one can make a trade-off between measurement imprecision
and backaction by choosing an appropriate mirror radius or wavelength. For a
perfectly reflecting hemisphere at k0rm = nπ, the detected scatter is maximally
enhanced, but contains no linear position information. Correspondingly, the
dominating term of backaction noise received by the particle vanishes. This
reflects the fact that the flow of energy does not necessarily carry information
[92]. One example of this from levitated optomechanics is for a particle trapped
in a single focused beam. In that scenario, while the particle scatters light
symmetrically in all directions, information about the particle’s position along
the beam axis propagates primarily into half-space opposite to the direction
of beam propagation [82].

In view of the measurement imprecision and backaction, We can now
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understand the derived suppression result. Under the suppression condition
for the mirror radius, photons detected along an antipode of the spherical
mirror surface do not carry linear position information as, to first order, one
cannot discern whether the photons came from the particle or from its image.
In direct correspondence, the spectral density of the recoil force imparted by
the photons vanishes as the free-space field gradient fluctuations destructively
interfere with the field gradient fluctuations from the mirror at the location
of the particle. However, we note once more that this full suppression is only
possible because of a standing wave trapping configuration, which suppresses
fluctuations in the field amplitude for a particle located close to the intensity
maximum.

To finish the analysis in this section, we consider the backaction for varying
trap centre position rt along the mirror axis. We solve (3.37) with r0 = ztẑ+δr,
expanding the expression in the integral about (0, 0, zt). The result is shown
in figure 3.6, which shows oscillations of the different backaction components
with the moving trap centre position. While SF

xx and SF
yy quickly return to

their free-space value with increasing zt, SF
zz overshoots to almost twice its

free-space value at around k0zt = ±π. This suggests that these points might
be suitable to make significantly more sensitive measurements of position in a
self-homodyne fashion.

3.4 Residual backaction noise

The suppression result found in the previous section predicts vanishing of the
dominating backaction noise term under a suitable condition on the mirror
radius. This however does not mean that backaction noise vanishes completely;
Even under perfect experimental conditions, the calculation is subject to
several approximations such as ignoring higher order scattered fields. Lifting
these approximations would lead to small, additional heating terms from
backaction. In sections 4.9 and 5.4.3 we investigate residual backaction noise
which would arise in the experimental trapping configurations considered in
this thesis as a result of scattered fields modifying the trapping potential.
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The largest contributions to residual backaction noise are likely to arise
from technical limitations in the experimental realisation. Imperfect mirror
reflectivity will limit suppression of backaction noise to a few percent. A
realisation scheme will also require surface quality and long-term mirror radius
stability δrm ≪ λ/2π. Considering the coefficient of linear expansion of
aluminium αAl = 2.3 × 10−5K−1 and a mirror with radius of about 1 mm,
sufficient radius stability can be achieved with thermal stability δT < 1K. A
recent experimental proposal utilising a spherical mirror for similar application
suggests that such temperature stabilisation and the quality of the fabricated
mirror surface should be easily achievable [89,100]. The mirror is also subject
to thermal noise. In context of LIGO interferometers the noise is problematic
in a low frequency band (up to a few hundred Hz), [101] but may require
further investigation for our application.

3.5 Other noise sources
In this section, we frame the discussion of suppressed backaction noise in terms
of the reheating rate, defined as the rate at which oscillation quanta are added
to the oscillator’s energy to compare it with other noise sources that would
be present. As mentioned previously, the dynamics of a particle in an optical
trap can be captured by decoupled Langevin equations for each direction (see
equation (2.33)). In this case and in the absence of a feedback cooling force,
the average energy of the oscillator evolves according to the following equation
derived from the Fokker-Planck equation, [38,102]〈

Ė
〉

= −γ(⟨E⟩ − E∞) (3.43)

where γ and E∞ are the mechanical damping and the equilibrium energy of
thermal bath respectively. When the system is prepared in a state of low
occupation out of equilibrium, the energy is subject to a constant heating rate
γE∞. For a particle constituting a harmonic oscillator at frequency Ω this
reheating rate is given by,

Γ = E∞

ℏΩ γ. (3.44)
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As a first step, we express the reheating rate due to a fluctuating force in
terms of the force noise spectral density to make a link to results found in
the previous section. Using the property of the spectral density for particle
position component, xi, and the Langevin equation with γ ≪ Ω, the position
spread is given by, 〈

x2
i

〉
=
∫
Sii(ω)dω

=
∫

|χi(ω)|2SF
ii (ω)dω

= SF
ii

π

m2Ω2γ

(3.45)

where we took SF
ii as frequency independent. Invoking the equipartition

theorem and using (3.44) leads to,

Γi = π

2mℏΩS
F
ii (3.46)

For typical experimental parameters, free-space backaction adds quanta to the
system at a rate Γ ∼ 10 kHz which is consistent with experimental observations
[38]. Given the discussion of residual backaction noise in the previous section,
if we assume that the force noise can be attenauted by a factor ∼ 10−2, we can
expect a reheating rate of ∼ 102 Hz contribution from backaction. At this level,
it no longer presents the dominant source of heating. In the next sections we
discuss other sources of noise and their relevance in an experimental protocol
for backaction suppression observation.

3.5.1 Residual gas heating
Laser induced recoil noise is a relatively weak effect. Therefore, in order to
observe its influence on the motion of the trapped particle, other sources of
mechanical noise have to be minimised. The particle needs to be sufficiently
well-isolated from other noise sources for backaction to be visible through
observations of particle dynamics. At pressures below 1 mbar, residudal gas
results in mechanical damping, [37,38]

γth ≈ 15.8
r2

p

mpvg

Pg (3.47)
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Figure 3.7: Threshold pressure (full red line) at which the heating rate from residual gas becomes
comparable to laser recoil noise (based on equation (3.48)), plotted against trap depth for rp = 150
nm and λ = 1550 nm. The red dashed lines with a shaded region denote trap depths achievable
in the two experimental arrangements considered in the two arrangements considered in this thesis
- the spherical mirror angled reflection trap (SMART) and the standing wave interference fibre
trap (SWIFT). The teal and gray lines correspond to estimates of a trap depth based on the
experimental parameters in an observation of laser recoil noise by Jain et al. [38, 103] and Kamba
et al. [104] respectively. We also show the corresponding threshold pressure trends using (3.48) for
their experimental parameters marked with the same colours.

where vg and Pg are the r.m.s. velocity and pressure of the gas molecules, and
rp and mp are the radius and mass of the trapped particle, respectively.

Comparing the reheating rate due to (3.47) with backaction reheating gives
an estimate for the threshold pressure needed for free-space backaction noise
observation. Using (3.47), (3.44), (3.46) and expressions for free-space recoil
heating (3.33), we find,

Pg ≈ 0.16 vg

r2
pkBT

ℏk0

2πcP0. (3.48)

Figure 3.7 shows the threshold pressure plotted against trap depth for a 150
nm radius silica particle. Although excessively large trap depths may be
unnecessary or even detrimental in common experiments, it is imperative if
laser recoil noise observation is the primary objective, and ultrahigh vacuum
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pressures are not accessible. Since observation of recoil noise is the main
subject of this thesis, in the following chapters discussing experimental
arrangements we consider larger particles (within the dipole approximation)
and high laser powers.

3.5.2 Laser intensity noise
The spring constant in an optical trap is proportional to local field intensity,
which makes the particle susceptible to parametric heating due to fluctuations
in the laser power. Intensity noise leads to heating of the oscillator energy at
a rate, [105] 〈

Ė
〉

= π

2 Ω2SRIN(2Ω) ⟨E⟩ , (3.49)

where Ω is the trap frequency and SRIN is the one-sided spectral density of
relative intensity noise of the laser. Since the intensity noise is evaluated
at twice the trap frequency, the heating rate is different along orthogonal
directions. The expression is also proportional to the average oscillator energy
⟨E⟩, making this heating mechanism exponential. If residual gas heating
is minimised, the intensity noise is the dominant heating mechanism in the
absence of feedback cooling. Using the shot-noise level as an estimate, in our
laser setup,9 we find SRIN = −132 dB/Hz. If the oscillator is in equilibrium
with the thermal bath (here assumed the residual gas) then ⟨E⟩ = (1/2)kBT ,
at room temperature intensity noise gives rise to a reheating rate of Γ ∼ 2
MHz. However, the effect of intensity noise can easily be rendered negligible
with feedback cooling, as was done in [38], by cooling the center of mass motion
below ∼ 1 K.

3.5.3 Laser phase noise in a standing wave
Standing wave traps are susceptible to noise in the position of the trap centre
due to laser frequency instabilities. Laser frequency stability can be improved
by orders of magnitude by employing the Pound-Drever-Hall (PDH) technique

9Seed laser: LN-focus 32, EDFA: HPOA-S
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[104,106]. The technique relies on tuning the laser frequency using a frequency
error measurement, derived from light reflected from an optical resonator. In
standing wave traps formed by laser retroreflection, this laser phase noise
is proportional to the mirror-particle distance. For large separations, the
resulting fluctuations in the trap centre can be the dominating source of
mechanical noise [104]. A combination of frequency stabilisation and reduction
of the particle-mirror separation in a standing wave trap experiment has
recently enable to render laser phase noise negligible [104], enabling laser recoil-
limited detection and ground state cooling.

3.6 Concluding remarks

In summary, we have analysed the effect of the spherical mirror geometry on
the minimum imprecision in a trapped particle position tracking experiment,
and the corresponding backaction noise experienced by the particle. We
have found that under a suitable condition on the mirror radius, the mirror
significantly attenuates the attainable acquisition rate of linear position
information, at the same time suppressing the largest backaction noise term.
In the case that the mechanical noise experienced by the particle is dominated
by backaction and the detection is shot-noise limited, we have shown that
the imprecision and backaction noise satisfy the Heisenberg limit of detection
for any choice of mirror radius rm and spanning half-angle θm < π/2.
Experimental considerations show that the suppression scheme should be
achievable in a realistic setting.

The main result shows a strong dependence of the imprecision-backaction
characteristics on the surrounding mirror geometry. The spherical mirror
geometry is uniquely suited for point-like particles as the mirror reflection
can perfectly match dipole emission away from the mirror. Other geometries
may present similar useful properties in future investigations, such as a plane
mirror-lens system. Other practical arrangements suitable for the scattering
properties of particles with different and more complex morphologies may
be found by adapting existing analysis tools, used for tailoring the optical
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properties of nanoscale emitters [72, 107]. We once again note that although
the spherical mirror geometry plays a necessary role for the suppression effect,
it is not sufficient; a standing wave trapping potential is also required to remove
the contribution of the local phase gradient, which would be present in a single-
beam configuration [82].

In the next chapters, we propose and analyse two experimental trapping
arrangements which could be used for the purpose of studying particle
dynamics at the centre of a (hemi-)spherical mirror. A protocol for feedback
cooling and systematically positioning the particle at the centre of the
spherical mirror will require further investigation. It is worth noting that
second-order position information in suppressed scatter is still available,
which should be sufficient for parametric feedback cooling [102]. Away from
the suppression condition on the mirror radius, it may be possible to employ
a passive cooling scheme, by dynamical backaction mediated by the spherical
mirror itself [108]. Such a scheme would further extend the utility of trapping
near a spherical geometry.
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SMART: Spherical mirror
angled-reflection trap

There are many ways to realise an optical trap which confines the particle to
the centre of a spherical mirror. One that takes advantage of the available
solid angle, allowing us to trap in front of a full hemisphere, uses the mirror
to reflect the incident laser beam to form a counter-propagating beam trap
(as shown on the left figure 4.1). In this way, the standing-wave pattern of
the trapping field becomes dependent upon the beam-mirror alignment. This
places constraints on the mirror radius and the focus position of the beam
which yield sufficient intensity modulation for trapping and a field maximum
at the mirror centre. In the next section we discuss these constraints.

While convenient for trapping, aligning the beam along the mirror’s axis
of symmetry obstructs particle observation, as the signal is swamped by the
trapping beam backreflection. We experimentally circumvent this limitation
by illuminating the trapping lens off-centre, yielding the beam inclined about
the mirror centre in order to spatially separate the trapping beam from
particle scatter (see figure 4.1). Following section 4.2, we present we discuss
experimental results obtained in the implemented SMART arrangement.
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Figure 4.1: Diagram showing the difference between (right) the SMART configuration and (left)
an ordinary standing wave trap formed along the mirror axis of symmetry. In both diagrams we
are assuming that the beam is polarised out of the page. In the setup on the left, central region of
the lens is swamped by laser retroreflection and the particle scatter cannot easily be accessed for
detection. In the setup on the right, particle scatter is spatially separated from the trapping beam.
In both diagrams the same portion of the solid angle is available, but it is easier to access isolated
scatter when the trapping beam is angled. Because of the spherical symmetry about the mirror
centre, the conditions for retroreflection in both setups are the same.

4.1 Beam reflection from a spherical mirror

Let us first consider the setup depicted on the left of figure 4.1. In the setup,
the origin of the coordinate system coincides with the centre of the spherical
mirror. The laser beam is propagating along the z axis, and is focused to a
point zf .

We initially focus on maximising the modulation of the intensity standing
wave pattern. In a counter-propagating beam trap, intensity modulation is
maximum when the two interfering beams have equal magnitudes in space but
propagate in opposite directions. For this we require the incident laser beam
to be retroreflected from the mirror surface, which occurs when the curvature
of the beam’s wavefronts matches the curvature of the mirror [85]. To this
end, we seek a condition on the beam focus position zf that matches this
requirement. We refer to this as the retro-reflection condition.
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Modelling the laser as a paraxial Gaussian beam with waist w0, [85]

E(ρ, z) = E0
w0

w(z) exp
(

− ρ2

w(z)2

)
exp

(
i

[
kz + k

ρ2

2R(z) − ϕg(z)
])

x̂ (4.1)

where the characteristic beam parameters are,

w(z) = w0

√
1 +

(
z

zR

)2
Waist radius

R(z) = z + z2
R

z
Radius of curvature

ϕg(z) = arctan
(
z

zR

)
Gouy shift

zR = πw2
0

λ
Rayleigh range

(4.2)

and we are considering field of a beam focused at zf , E(ρ, z−zf ). The beam is
retroreflected at the mirror surface when its radius of curvature matches that
of the mirror,

rm = R(z − zf ) = z − zf + z2
R

z − zf

(4.3)

which has two solutions for the focus position,

z±
f = rm

2

1 ±

√√√√1 − 4 z
2
R

r2
m


≈ rm

2

(
1 ±

[
1 − 2 z

2
R

r2
m

]) (4.4)

where we assumed that zR ≪ rm. Solutions z+ and z− correspond to the beam
focus close to the mirror centre or to the mirror surface respectively. Since
we want the laser intensity at the trapping position to be as large as possible,
we choose the negative sign solution. Therefore, we can achieve maximum
modulation when the beam is focused a distance z2

R/rm from the mirror centre
towards its surface. Note that since zR ≈ λ/π(NA)2 for a beam of numerical
aperture specified by NA, the tighter the focus of the beam, the closer the
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Figure 4.2: Contribution of the Gouy phase shift of a Gaussian beam to the round-trip phase.
The beam is focused to point F (z = zf ) about the mirror centre C (z = 0). The beam is reflected
at M (z = rm). When points C, F and M correspond to those that yield retro-reflection, the Gouy
phase difference between C and M is equal to exactly π/2.

solution z−
f is to the centre of the mirror. We now turn to the problem of

finding a condition on the mirror radius which yields an intensity maximum at
the centre of the mirror. To do this, we consider the round-trip phase about
the mirror centre. For a plane wave reflecting from a perfect plane mirror a
distance rm away this round-trip phase would simply be equal to 2krm+π. For
a Gaussian beam, there is an additional contribution arising from the Gouy
phase shift. With the focus at z−

f we find that,

∆ϕ = 2krm + π + 2 [ϕg(zf ) + ϕg(rm − zf )]︸ ︷︷ ︸
π

= 2krm (4.5)

that is, the contribution of the Gouy phase shift to the round-trip phase is
equal to exactly π when the beam is retroreflected (see figure 4.2), such that
the total phase is fixed only by the round-trip distance. To ensure that the
incident beam is in-phase with its reflection at the centre, the mirror radius
has to be restricted to,

krm = nπ (4.6)

4.1. Beam reflection from a spherical mirror 74



Chapter 4. SMART: Spherical mirror angled-reflection trap

where k is the wavenumber. This condition corresponds to the maximum
enhancement of scattered power from a trapped particle. In the trapping
configuration considered in this section, the adjustment of the mirror radius
away from (4.6) in an experiment would shift the intensity from a maximum to
a minimum. However, as we discussed in the previous chapter, the condition in
(4.6) is exactly the condition needed to achieve suppression of force noise acting
on a trapped particle. This coincidental feature of the SMART arrangement
ensures that the recoil noise suppression condition is matched when the particle
is brought to the centre of the spherical mirror.

4.2 Experimental implementation introduction
In the following sections we discuss the experimental implementation of the
SMART arrangement, constructed during the project and used for trapping
of 300 nm diameter silica particles in front of a spherical mirror. We begin
the discussion by looking at the setup of hybrid fibre and free-space optics
used for trapping and detection, followed by the method of particle loading
and the vacuum system used. We also develop a model for the SMART
detection system, which generates unique spectral lineshapes for the motion
of the nano-sphere. We then present the experimental results and use them
for trap characterisation. Although we have not reached the final observation
at the centre of the spherical mirror, at the end of the chapter we outline
potential protocols for positioning the particle at the mirror centre and recoil
noise suppression observation.

4.3 Laser system and trapping optics
The setup used is shown in figure 4.3. The system is based on the low-
noise 1550 nm telecom fibre laser LN-focus-32 from LN Solutions. The laser
generates about 50 mW of optical power, 10 % of which was used to seed the
erbium-doped fibre amplifier (EDFA), to be used for trapping. The remaining
90 % was either dumped, used as reference for interferometric measurement,
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Figure 4.3: Implementation of the SMART arrangement, used to obtain the experimental results
in this chapter. Crimson lines represent optical fibres. 10 % of the 1550 nm laser is used to seed
the erbium-doped fibre amplifier (EDFA) that is then used for trapping via the trapping channel
(CH1). The remaining 90 % is used either dumped or used as reference for heterodyne detection
with the collected scatter via the detection channel (CH2) on the photodiode PD2. Photodiode
PD1 was mainly used to assess alignment of CH1 beam by measurement of back-reflection coupled
into fibre. λ/2 and λ/4 denote waveplates used to control polarisation. The local oscillator was
used to modulate the trapping light’s frequency for heterodyne detection, and the intensity via the
acousto-optic modulators (AOMs).
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Figure 4.4: Intensity profile of the trapping field in SMART about the beam focus - a superposition
of two identical counter-propagating Gaussian beams with the waist w0 = 4.5 µm. The beam axis
is inclined at a shallow angle to the mirror axis of symmetry. On the plot x∥ and x⊥ denote
coordinates parallel (fast) and perpendicular (slow) to the beam axis respectively.

or sent through the detection channel (labelled CH2 in figure 4.3) to assess
alignment. The erbium-doped fibre amplifier (EDFA) (BKTEL HPOA-S from
Laser 2000) was used to amplify the trapping light to powers upwards of 4
W. Due to unavoidable losses in the acousto-optic modulator (AOM), the
final power sent into the trap site via the trapping channel (labelled CH1
in figure 4.3) was kept at around 1.5 W - 2 W. Although these powers may
seem excessively high compared with other experiments utilising the 1064 nm
wavelength, our laser system allowed us to stably trap silica nanoparticles at
pressures below 7 × 10−6 mbar.

Fibre optic components were connected using the single-mode telecom fibre
SMF-28, which is not polarisation maintaining. Because of this, the system
was subject to thermal drifts in polarisation, which we controlled using half-
and quarter-wave plates in free-space upon the light leaving the fibre (denoted
λ/2 and λ/4 on the figure 4.3)

The SMART trapping potential was realised by significantly underfilling
an aspheric lens with a collimated beam, translated horizontally away from
the lens’s centre as depicted in figure 4.1. The laser light leaving the fibre
was collimated using the TC18APC-1550 triplet collimator from Thorlabs, and
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focused with a 25 mm diameter, 0.83 NA aspheric lens from Edmund optics1.
Using the specifications of the lens and the collimator we estimate the effective
numerical aperture used for trapping as 0.11. This is a relatively low degree of
focusing that allows us to safely treat the focused light as a paraxial Gaussian
beam. When aligned with the spherical mirror for retroreflection as discussed
in the previous section, this arrangement generates a standing wave intensity
profile with a waist w0 = λ/(πNA) = 4.5 µm and is non-diverging near the
waist over many wavelengths along the beam axis (see figure 4.4). In a well-
aligned setup, the scattering force is negligible and we can estimate the trap
depth using the optical potential U = −αI/4 from the optical intensity I at
the waist, and the local second derivative to estimate the trap frequencies from
the spring constant. At 1.5 W illuminating power, the SMART arrangement
should generate a trap depth of about 2.8×105 K, with slow and fast oscillation
frequencies Ω⊥ ≈ 2π × 24 kHz and Ω∥ ≈ 2π × 315 kHz respectively. We have
observed notable discrepancies from these estimates in the captured spectra
of the signal, which we will discuss later on in the chapter.

For the spherical mirror, we have used a 25 mm diameter, protected gold
spherical mirror with radius of curvature of 20 mm, from Edmund optics2. The
mirror is specified at >96 % reflectivity and has an numerical aperture of about
0.63. Results found in the previous chapter suggest that a mirror of this NA
should exhibit appreciable suppression of backaction noise (at least ∼ 50%
reduction along the mirror axis, see figure 3.5 at θm ≈ 0.22π), appropriate
for an initial demonstration; A future experiment can always be extended to
incorporate a full hemispherical mirror.

The spherical mirror was mounted on a three-axes, vacuum-compatible
translation stage from Standa3 which we used for system alignment. The
intensity profile of the trapping light is strongly dependent on the degree of

1https://www.edmundoptics.co.uk/p/25mm-dia-083-na-uncoated-1550nm-nir-aspheric-lens/
45821/

2https://www.edmundoptics.co.uk/p/25mm-dia-x-10mm-fl-protected-gold-concave-mirror/
5325/

3https://www.standa.lt/products/catalog/vacuum_compatible_stages?item=404&prod=
vacuum-compatible-translation-system
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Figure 4.5: Detection geometry in SMART. The lens is illuminated off-axis with trapping light
E0 and focused. The trapping light is polarised out of the page along ŷ. The particle, displaced
from the focus by a distance |r0| ≪ f , scatters with the field Es and detected off-axis at a distance
Ld.

alignment, which was assessed based on reflected power coupled back into fibre
at CH1 and CH2 collimators, and measured on PD1 and PD2 respectively.4
The power which couples back into fibre relies on mode-matching of the
reflected beam-spot at the endface of the collimators (see section 5.4.1). In
the experiments, we have reached a maximum back-coupled power of reflected
light of about 40 % on both channels.

4.4 Particle detection

We begin the discussion of particle postion detection by presenting a simple
model for the detection signal. We then follow with the experimental details
of detection in our implementation of SMART.

4To align the detection channel, fibres were reconnected to send the seed laser light, ordinarily
used as a reference field for detection, down CH2 to measure the reflected power coupled back into
fibre.
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4.4.1 Model of the detection signal
In order to correctly identify individual particles using interferometric
detection, we need a model for the detection signal. Interferometric particle
detection in SMART gives rise to a unique lineshape of the signal spectrum
where spectral peaks appear not only at frequencies corresponding to the
mechanical motion but also at frequency sidebands corresponding to the sum
and difference of the fast and slow oscillation frequencies. We show this by
considering ordinary homodyne detection of the particle scatter as depitced
in figure 4.5. The particle scatters laser light which is captured on the other
end of the lens, separating it from the trapping light. The motion of the
particle at the trap site modulates the phase ϕd of the detected scatter, which
is probed by mixing the captured light with a reference field.

Since the trapping light forms a standing wave with its reflection from a
spherical mirror, to first order in the particle displacement the trapping light
does not contribute to phase sensitivity5. Therefore, the phase sensitivity only
depends on the distance Ld of the particle to the lens along the detection
channel, and we approximate the scatter as having constant amplitude. Using
the simple geometric model presented in figure 4.5 we find that the phase
response to the particle displacement decomposed at the focus with respect to
the trapping channel is given by,

ϕd = kLd − kf = k
√
r2

0 + f(x0 sin θd − z0 cos θd) (4.7)

where r2
0 = x2

0 + y2
0 + z2

0 . When the detected scatter is mixed with a reference
field at the same optical frequency, the signal observed on the photodetector
has the form,

V (t) ∝ cos(ϕd(t) + φ(t)) (4.8)

where ϕd corresponds to phase modulation kLd by particle motion and φ

is the remaining phase accrued due to the optical path difference between
the detected scatter and the reference light. Note that we explicitly kept

5motion at an intensity maximum of a standing wave only modulates the intensity of the scatter
from second order of particle displacement
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Figure 4.6: Stochastic harmonic oscillator simulation data for simulation time of 34ms with
Ωx = 2π × 20 kHz, Ωy = 2π × 30 kHz and Ωz = 2π × 300 kHz. The temperature and the damping
rate was chosen equal to T = 300 K and γ = 2.2 kHz respectively, which corresponds to 1 mbar
environment pressure. Top: Position spectral densities of the oscillators along x, y, z. Bottom:
Corresponding signal spectral density with θd = π/4, a constant phase offset φ = π/4 and f =1.5
cm.

time dependence in both terms; in φ the time dependence can arise due
to incoherent instabilities in either of the interferometer arms, such as slow
thermal drifts in optical fibre and free-space optical elements or mechanical
vibrations.

It is difficult in general to accurately model the analytical spectrum of the
signal (4.7) generated by the particle motion [109]. To understand the spectral
features of the detection signal in the SMART geometry, we instead use the
signal in (4.7) as a transfer function for particle displacement data derived from
a numerical simulation of a stochastically-driven damped harmonic oscillator
simulated using the Euler-Maruyama method. We model each component of
particle displacement as an independent oscillator with its own mechanical
frequency Ωx,Ωy,Ωz subject to damping γ and bath temperature T , [110]
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ï(t) + γi̇(t) + Ω2
i i(t) = 1

m
Fi(t)

⟨Fi(t)Fi(t′)⟩ =
√

2mγkBTδ(t− t′)
(4.9)

for i = x, y, z. Results of one simulation run are shown in figure 4.6. We
find that apart from spectral peaks corresponding to first-order harmonics of
the x and z motion, additional peaks appear on the spectrum at Ωz ± Ωx.
The sidebands are a feature of the signal rather than mechanical motion, a
feature reminescent of the spectra of modulated signals in radiofrequency
communications and in other levitated optomechanical systems such as
motional spectra of non-spherical levitated particles [111].

Although in a well-aligned system we expect the frequencies Ωx and Ωy

to be equal, for the simulation we have chosen Ωx ̸= Ωy to see how the two
frequencies are represented in the signal. As expected, a first-order harmonic
corresponding to Ωy is not visible in the signals since the phase ϕd does not
carry linear y information. More interestingly, there appears a strong second-
order peak 2Ωx, but the second order peak at 2Ωy is not visible. This is
because the peak at 2Ωx originates from the second term under the square-
root in equation (4.7). The sensitivity of this term is amplified by the length
factor f which in the experiment is larger than particle displacement by several
orders of magnitude. The other, second-order term is visible on the spectrum
at lower pressures.

The relative amplitude of the spectral peaks of the signal depends on the
offset phase φ and the angle θd. At θd = 0 and θd = π/2 we only retain
first-order peaks of either z or x motion respectively, and there is no sideband
structure. This is clear from the diagram in figure 4.5, as in the case of θd = 0
or π/2 the system is sensitive to only one of either z or x to first order. In
the experiment, the centres of the beam spots of the trapping and detection
channels were separated by about 1 cm with the lens focal length of 1.27
cm giving f = 1.62 cm and θd = 37.7◦. These values are comparable to
those chosen for the simulation. While θd is under experimental control, φ is
determined by the remainder of the optical path. This phase determines the
relative height of even- and odd-numbered spectral peaks. Note that the peaks
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Figure 4.7: Experimental spectral density of a homodyne signal captured at 1.9 mbar. Using our
model we can identify the fast and slow trap frequencies to appear at about Ωz = 2π × 237 kHz
and Ωx = 2π × 17.3 kHz respectively.

in the spectrum of figure 4.6 at Ωx, Ωz are first-order (odd-numbered), while
2Ωx and the sidebands Ωz ± Ωx are second-order (even-numbered). Therefore,
variation of φ affects the contrast between Ωz and its sidebands. In the
simulation we have chosen φ = π/4 which qualitatively agrees with typical
signal spectra obtained in the experiment (see figure 4.7), which shows that
both the first-order and second-order peaks are visible.

4.4.2 Detection optics

To observe the motion of the particle we have used the collimator
F280APC-1550 from Thorlabs, which has similar specifications to the
collimator on the trapping channel and gives a collection NA of 0.1. In this
way we expected to capture about 1 % of the particle scatter or 3.5 µW for a
300 nm diameter nanoparticle.

For detection, we have used the InGaAs PIN photodiode HCA-S-200M-IN.
The detector has noise-equivalent power (NEP) of 5.2 pW/

√
Hz, making 300

nm particles easily detectable. The linear response of this photodiode saturates
at 60 µW. To stay within this range we have tuned the power of the reference
field to about 10 µW.
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Figure 4.8: Signal spectra captured for a particle trapping event using the cross-homodyne
reference (at 7.9 mbar) and with addition of a heterodyne reference (at 4.8 mbar) derived from
the seed laser. The teal line corresponds to the heterodyne spectrum shifted down by 2 MHz for
comparison. The power of both reference fields was tuned to about 10 µW. The spectra were taken
3 minutes apart. The cross-homodyne method allowed us to consistently reach lower noise-floors
compared with the other detection methods.

4.4.3 Detection methods
In developing the experiment, we have explored various detection methods,
differing in the source of the reference field. For ease of reference, we will
name them as follows:

1. Seed-homodyne: Detection with a portion of the seed laser’s power used
as reference, mixed with the detected scatter using a fibre tap coupler at
PD2 (see figure 4.3)

2. Seed-heterodyne: Detection with a portion of the seed laser’s power used
as reference, offset from the detected scatter by 2 MHz by the AOM
modulation

3. Cross-homodyne: Detection with a small portion of the trapping laser
power, back-reflected from the spherical mirror and cross-coupled onto
the detection channel

Due to the large path difference in the constructed setup between the
seed reference field and the detected scatter, seed-homodyne detection was
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Figure 4.9: Picture of the vacuum system. The different labels denote the following components -
(A) AR-coated viewport through which the laser was sent, (B) chamber door where the blue inset
shows the inside of the chamber with the door open showing the optics inside the chamber, (C)
flange connected to the pressure gauge ITR 90 from Leybold used to take pressure readings below
100 mbar, (D) Flange connected to the vacuum pumps.

extremely sensitive to thermal drifts and mechanical vibrations of the fibres
and free-space optical elements, necessarily leading to additional noise.

The trapping and detection channel collimators were mounted on 5-axis
kinematic mounts, initially used to ensure that only scatter gets captured onto
the detection channel. We have found that a homodyne reference field can be
derived by bringing the trapping and detection collimators closer together to
couple a small portion of trapping light onto the detection channel. This limits
the path difference to the roundtrip between the particle and the mirror, which
results in a significantly more stable signal less susceptible to perturbations
of the constructed setup. We show one example comparison of the spectra
in figure 4.8. Because of the improvement to stability, a cross-homodyne
detection reference field was used for the majority of the data captured in
the experiment.
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4.5 Vacuum system

To be able to house the trapping optics and the translation stage on which
the spherical mirror was mounted (in total at least ∼ 0.008 m3), we employed
a large vacuum chamber DN 500 cubical from Pfeiffer Vacuum with internal
volume of 0.125 m3. For evacuation, we used two pumps operated in different
pressure regimes; Scroll pump nXDS6i from Edwards Vacuum was used to
bring the chamber from atmospheric pressure down to 100 − 10−2 mbar. At 1
mbar, we engaged the turbo pump HiPace 80 from Pfeiffer Vacuum to lower
the pressure further into the high vacuum regime. The constructed vacuum
system is depicted in figure 4.9. Using this system we have reached a minimum
pressure of 5 × 10−6 mbar. For the considered laser and particle parameters,
according to figure 3.7 this pressure is insufficiently low for photon recoil
noise observation. However, the chamber is specified to be able to reach 10−7

mbar, therefore a future experiment could be extended to reach the necessary
pressure threshold with additional pumping. This pressure threshold can also
be brought up closer to the pressure attained in the chamber by trapping larger
particles or increasing the laser power (see equation (3.48)).

4.6 Particle loading

Particles were introduced into the trap site by spraying an aerosolised
nanoparticle solution with a medical nebuliser (MICRO AIR from Omron)
before evacuating the vacuum chamber. The particles were prepared with
a concentrated 10 mg/mL solution of 300 nm diameter silica nanospheres
from nanoComposix. The solution was then further diluted with distilled
water to a concentration of 2 µg/mL to yield about ∼ 3 particles per droplet
forced through the mesh of the nebuliser. Before use, each solution batch was
sonicated for about 1 hour in an ultrasonic bath.

We delivered the spray of nanoparticles through the main door of the
vacuum chamber. The open door visibly exposed the trap site to perturbing
air which prevented successful trapping. To contain the spread of the aerosol
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Figure 4.10: Optics inside the vacuum chamber. Aluminium foil ring was fixed around the lens
mount to contain the spread of the nanoparticle solution. The solution was sprayed through the
narrow opening in the foil ring through a narrow tube.

in the chamber and shield particles from persisting air currents, we introduced
a narrow aluminium foil ring around the lens mount (see figure 4.10). The
particles were delivered through a small opening in the foil ring.

4.7 Discussion

In the experiment, the SMART configuration proved to be a robust platform
for trapping in levitated optomechanics. In this first iteration of the
experiment, we were able to reach 6.2 × 10−6 mbar pressure without losing
the particle, with trapping times on the order of days without feedback
cooling. However, we have made several observations which deviate from the
desired trap performance. To be able to make the necessary improvements,
we descibe these observations in this and the following sections.
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Figure 4.11: Cross-homodyne signal PSD captured at 5.2 × 10−5 mbar. The bottom plots show
the spectrum around the slow oscillation frequency range of Ωx, Ωy (bottom left) and the fast
oscillations Ωz (bottom right)

4.7.1 Trap performance

Consistently, the mechanical frequencies of the trapped particles measured
lower than what is expected from a calculation based on the local intensity
(see section 4.3). Let us focus the discussion on the fast oscillation frequency
Ωz for which we expected 315 kHz. For most particles trapped, we observed
Ωz of around 250 kHz. Trapping around 315 kHz was possible, although
less probable and unstable. Figure 4.12 shows a series of snapshots captured
during pump down from 50 mbar which demonstrates this. Spectral peaks
corresponding to two particles at 220 kHz and 315 kHz are clearly visible.
As the pressure decreases, the lower frequency peak remains at 220 kHz,
while the 315 kHz drifts down in frequency before the particle eventually
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Figure 4.12: Series of signal spectrum snapshots captured using the cross-homodyne method
during pump down from 50 mbar. Gray dashed lines are centred with the peaks in the first
snapshot.

4.7. Discussion 89



Chapter 4. SMART: Spherical mirror angled-reflection trap

falls out at around 7.2 mbar. This suggests that the trapping potential in
the highest region of intensity is unstable, possibly due to misalignment or
distortion of the trapping beam reflection. Such misalignments may prevent
from systematically bringing the particle to the centre of the spherical mirror
in a future experiment. We discuss system alignment in more detail in the
next section.

Let us now discuss the spectral lineshape of the signal at low pressure.
Figure 4.11 shows a cross-homodyne spectrum captured at 5.2 × 10−5 mbar,
and a corresponding simulated spectrum in figure 4.13. In comparison, the
spectra are in good qualitative agreement aside from the peak at around 2
kHz on the experimental signal spectrum. The spectra vastly differ in the
shapes of the individual peaks; the experimental peaks are not Lorentzian and
the simulated lineshapes are significantly narrower. These differences arise
since the statistics of the stochastic force implemented in the simulation only
account for the steady-state reached under the influence of the surrounding
gas. At pressures as low as 10−5 mbar, the particle is strongly affected by
the noise and the broadening mechanisms associated with the laser, such as
intensity noise. Intensity noise translates to fluctuations in the trap frequency,
which broadens the spectral peaks when averaged over many cycles [112].

It is also plausible that the peaks are broadened by the presence of multiple
particles in a narrow spectral range (see bottom right of figure 4.11). For the
purpose of observing suppression, it is preferable to contain only one particle
as other visible particles obstruct reliable detection. Presence of other particles
also lends itself as an explanation for the appearance of a peak around 2 kHz.
Small differences in the slow mechanical frequencies Ωx of different particles
could lead to the appearance of sidebands in the signal. In section 4.8 we
present results for an experiment in which we successfully eject unwanted
particles by parametric excitation.

Another possible explanation for the peak at around 2 kHz is the
misalignment of the detection channel along the ŷ axis, a description of which
is missing from our model of the detection signal. Such misalignment could
give rise to first order information about the motion in the ŷ direction in
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Figure 4.13: Simulated signal spectrum as described in section 4.4.3 with θd = π/4, φ = π/4
and damping rate corresponding to 5 × 10−5 mbar and simulation time of 1.3 s. The mechanical
frequencies were roughly matched to the experimental spectrum in figure 4.11 with Ωx = Ωy =
2π × 18.5 kHz and Ωz = 2π × 230 kHz.

the signal. The interference of the x̂ and ŷ motion on signal level could
lead to the formation of sidebands at Ωx ± Ωy. Small differences in the
trap frequencies Ωx and Ωy occur if the beam spot transverse to the beam
axis is not symmetric; this is most common in the case of strongly focused
beams [37]. In our case the trapping beam is weakly focused, but it is subject
to misalignment with its reflection.

4.7.2 System alignment
The constructed experiment was extremely sensitive to thermal variations and
mechanical vibrations. This has implications for detection (as discussed in
section 4.4.3) and trapping.

Using the percentage of total beam power reflected and coupled back into
the CH1 collimator as a metric of alignment, in figure 4.14 we observed
slow drift in alignment on the order of hours, which we attribute to local
temperature fluctuations. Although coupled power fluctuated over a large
range of around 10 %, the trap proved itself to be quite tolerant - a nanoparticle
remained trapped for the duration of gathering the data in figure 4.14.

The system alignment was also highly sensitive to changes in pressure
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Figure 4.14: CH1 back-coupled power of the reflected beam against time.

between atmospheric pressure and about 1 mbar, as shown in figure 4.15.
While this sensitivity has no real implications for trap performance once the
lower pressure is reached, the system required active adjustment in beam
alignment during pump down in order to ensure that the particle remains
trapped.

4.7.3 Future improvements

Given the discussion in the previous sections, we identify four main aspects of
the experiment which require improvement or developement, necessary prior
to recoil noise suppression observation:

(i) Trap stability for reaching ultra high vacuum pressures

(ii) Minimisation of residual intensity noise

(iii) Positioning protocol for bringing the particle to the mirror centre

(iv) Particle loading method

We now discuss these in order and present a plausible roadmap for recoil noise
suppression observation.
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Figure 4.15: CH1 back-coupled power of the reflected beam during pump down from atmospheric
pressure to about 1 mbar. At the end, the pressure was brought back to atmospheric.

(i) In this first iteration, we were not able to reach the pressures below
6.2 × 10−6 mbar without losing the particle during pump down. Our
results show that our setup is sensitive to beam misalignments, making
the system susceptible to slow thermal drifts. Poor alignment could also
affect trap stability at low pressures and give rise to additional mechanical
noise. Further experiments will require improvements to beam alignment
to ensure that the particle can be stably trapped and systematically
brought to the centre of the spherical mirror. Active alignment control
with electric motors or piezo drivers [113] may be required to ensure
long-term stability.

(ii) Observation of recoil noise requires minimising the effects of laser
intensity noise, which is proportional to the oscillator energy and reheats
the motion of the particle significantly faster. For this reason, further
experiments will require the implementation of feedback cooling. With
additional electronics to process the detected scatter and generate a
feedback signal, our experimental setup has the components necessary
to cool the motion of the particle via intensity modulation with the
AOM. The optical potential in the SMART configuration may also allow
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for the application of the recently developed method of ‘optical cold
damping’ for reflected beam standing waves, which was used for ground
state cooling [114]. The method relies on periodically modulating the
phase of the trapping beam to put an imbalance between the red and
blue sideband amplitudes, leading to a cooling effect.

(iii) A particle loaded into the trap site can get confined in a standing wave
maximum a long distance away from the mirror centre. Approximating
the optical potential away from the centre as the same as at the focus
of a Gaussian beam with a larger waist, the slow frequency of oscillation
is given by Ωx(z) = Ωx(0)w0/w(z), where a similar expression holds for
the fast oscillation frequency Ωz. In this way, the frequency readout can
serve as a gauge for the distance away from the focus. Using figure 4.11
as an example, ignoring possible misalignments, for our experimental
parameters the above expression for the frequency suggests that the
particle is located about 35 µm away from the focus.
It is possible to transfer the particle between adjacent trap sites of a
standing wave by parametric amplification, as was done in previous works
[115]. By exploiting our implementation of the standing wave trap, a
particle can also be shifted along the beam axis by tuning the laser
wavelength. For a mirror of radius rm = nλ/2, where n ∼ 103 is an
integer, a shift of only ∆λ = λ/n is required to shift the standing wave
pattern by λ/2. Such shifts are achievable using tunable laser sources. We
can show that the shifts cause negligible deviation from the retroreflection
condition by considering the optimal focus position in equation (4.4). We
find that shifting the wavelength by ∆λ = (m/n)λ shifts the optimal
beam focus position by,

∆zF ≈ mλ

n2π2NA4 (4.10)

for n > m. For a 4 mm diameter spherical mirror, and NA = 0.1 we
get ∆zF = 6 × 10−4mλ, hence in this way the standing wave pattern
can be shifted by many integer steps m without affecting the modulation
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Figure 4.16: Simulated intensity profile of a Gaussian beam of NA = 0.3 incident upon a perfectly
reflecting hemispherical mirror of radius rm. The mirror radius was varied 20λ ≤ rm ≤ 20.5λ,
keeping the point to which the Gaussian beam was focused to fixed at z−

F (rm = 20λ). The simulation
was performed using the software suite SCUFF-EM [116,117] implementing the boundary element
method for scattering problems.

depth of the trapping potential. To perform an additional check, we
simulate the shifting intensity pattern for a small hemispherical mirror
with varying radius. The results are shown in figure 4.16. Note the
unchanging colour scale of the intensity profile as the radius is varied.
As discussed at the beginning of this chapter, it is a unique feature of
the SMART geometry, that the suppression condition coincides with an
appearance of intensity maximum of the standing wave at the centre of
the spherical mirror. Because of this, the detected spectrum provides
sufficient information needed to determine whether the particle is shifted
to the mirror centre. In a well aligned SMART setup, the mechanical
frequency of the particle approaching the mirror centre should increase,
and in close proximity to the centre, the first-order peak of mechanical
motion should vanish. It can therefore be verified whether the particle has
reached the mirror centre by systematic observation of the disappearance
of the first order peak in the detected signal spectrum.
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(iv) Optical suppression of the detected scatter is insufficient to determine
whether the motion of the particle was affected. To confirm whether
the spherical mirror is affecting recoil noise, reheating trajectories of
a particle cooled below the temperature of the thermal bath need be
measured over many experimental runs as was done in [38]. Such a
protocol requires a robust method for loading the particle, preferably at
low pressures in case the particle escapes. The nebuliser method used in
our experiment is only applicable at atmospheric pressures and introduces
many particles which is undesirable. It would be beneficial for a future
experiment to use one of the other popular methods of particle loading,
such as using a piezoelectric element inside the vacuum chamber [113,118]
or the LIAD method [119,120].

4.8 Particle ejection by parametric excitation
In order to rule out the presence of additional unwanted particles, we
attempted to eject them by intensity modulating at twice the trap frequency
2Ωx. We modulated the intensity with a depth of a few percent. The frequency
of modulation was slowly ramped down during the ejection attempt, to follow
the decreasing trap frequency of a particle with an excited amplitude. A
result of this procedure is shown in figure 4.17. The figure shows a clear
change in the spectrum after the frequency ramp down, around both the slow
oscillation frequencies, but also fast oscillations around 270 kHz which were
unaffected by the modulation. The spectrum lineshape remains complicated
after excitation suggesting that several particles may have been present after
ejection. In a future experiment, multiple frequency sweeps may be required
to eliminate all but a single particle.

4.9 Residual backaction noise in SMART
The case of a large, perfectly-reflecting hemi-sphere corresponds to three
approximations which hide additional heating - large mirror radius
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Figure 4.17: Series of signal spectrum snapshots demonstrating the result of parametric excitation
procedure. The blue lines denote the modulation frequency during the snapshot. The modulation
frequency was slowly ramped down from 38 kHz to 33 kHz at ∼ 10−4 mbar pressure.
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rm ≫ λ, |r0|, mirror reflectivity ρ = −1 and mirror spanning angle
θm = π/2, respectively. The final result in (3.41) depends linearly on
the mirror reflectivity. While mirrors of state of the art metallic mirror
reflectivities of Re [ρ] ≈ 0.99 are available, perfect reflection is not possible,
which immediately constrains the minimum achievable backaction noise level
to 10−2 of its free-space value.

Dipole emission of a particle located at the centre of a spherical mirror is
retro-reflected. This is not the case when the particle is displaced from the
centre. However, assuming a large mirror radius allows us to make the retro-
reflection approximation of the dipole scatter, which corresponds to neglecting
the change in the direction of the wavevector direction of the reflected scatter.
To first order, this amounts to neglecting electric field terms proportional to
|r0|/rm. We can assume that these neglected field terms lead to additional
heating to place limits on the achievable suppression level. Since |r0| ≲ λ,
so long as the mirror has a radius of rm ≳ 1 mm, the additional backaction
heating due to non-retro-reflected scatter is constrained to ∼ 10−3 of its free-
space value.

A smaller spanning angle of the mirror θm < π/2 leads to additional heating
as shown in figure 3.5. For the SMART arrangement, it is possible to utilise a
full hemisphere for trapping, hence we can assume that θm is not a limitation.6

As briefly discussed in the previous chapter, the particle interacts with an
infinite series of reflection fields of its own scatter from the mirror. In the
preceding calculations, we have fully neglected the influence of these reflected
dipole fields on backaction noise. A simple estimate might lead one to believe
that the scattered fields have a negligible effect on heating; the reflected scatter
which returns to influence the particle has the form |Es| ∼ k3|p| = k3α|E0| and
is smaller than the trapping field in magnitude by a factor of k3α ∼ (rp/λ)3.
For a particle of radius rp = 0.1λ we could therefore expect the scattered fields
to contribute a factor of 10−6 in additional heating, since backaction noise
spectral density scales quadratically with the field. However, the reflected
scatter has an additional effect - it exerts an additional optical force on the

6This is not the case for the fibre trap arrangement SWIFT, which we discuss in the next chapter.

4.9. Residual backaction noise in SMART 98



Chapter 4. SMART: Spherical mirror angled-reflection trap

particle which can shift the equilibrium position away from the mirror centre.
Not only is suppression less effective away from the mirror centre, but the
particle can be shifted to a point of non-zero field gradient, which increases
backaction noise further. In the next section we numerically analyse this effect.

4.9.1 Influence of the SIBA force on trapping
Suppression of backaction in a counter-propagating beam trap, which was
computed in section 3.3, relies on the vanishing of the trapping field gradient
to first order about the centre of the spherical mirror. This point should
coincide with the particle’s equilibrium position, however, this may not
be the case if the reflected scatter exerts a force which significantly shifts
the equilibrium position of the particle. This is known as the self-induced
backaction (SIBA). It has been shown experimentally that SIBA can play an
active role in trapping near resonant structures [121] by shifting the resonant
frequency of the structure as the particle moves [122]. In this section we
analyse this SIBA force for a particle trapped near the centre of a spherical
mirror, with various beam and particle parameters. We find that SIBA only
has a strong influence on trapping of large Rayleigh particles along directions
of weak confinement by the trapping beams. For appropriately chosen beam
and particle parameters, SIBA provides a negligible contribution to trapping
and does not shift the equilibrium position.

We follow the treatment presented in [98], which accounts for the influence
of the environment on the particle by defining an effective polarisability which
is a tensor quantity that varies at each point in space,

αeff(r0) =
(

I − α0
k2

0
ϵ0

[ 1
6π I − Gs(r0, r0)

])−1

α0. (4.11)

This expression follows when the first-order scattering part of the self-
consistent field which the particle interacts with is absorbed into the
definition of the polarisability. Assuming harmonic time dependence
throughout, the complex amplitude of the dipole moment is then given by,

p = αeffE0. (4.12)
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The time-averaged force which acts on the particle is then given by equation
(2.25) where the field E is the sum of the trapping field and reflected dipole
field at the position of the particle. Accounting for the dipole emission reflected
back onto the particle by the mirror to first order, this field reads,

E = E0(r0) + k2
0
ϵ0

Gs(r0, r0) · p (4.13)

To find the effect of the scatter reflection from the spherical mirror has on
the trapping forces, we compute (2.25) with (2.9) with a particular focus on a
trapping configuration of a standing wave along the mirror axis (ẑ).

Throughout this numerical study we model the trapping beams as Gaussian
beams with λ = 1550 nm of NA = 0.3. Each beam carries a power of 500 mW
and has a waist w0. We assume that the mirror spans NAm = 0.9 (θm = 64.2◦

in figure 2.1), it is perfectly reflecting with radius constrained to k0rm = nπ

and is oriented as shown in figure 2.1. We did not restrict the calculation to
small displacements, computing Gs numerically on a square grid of side length
2λ. The considered particle is a silica nanosphere with ρ = 2300 kg/m3.

Comparison of figure 4.18 with 4.19 reveals that SIBA has a pronounced
effect when the confinement along a direction is relatively weak, due to a
shallow field gradient.

The effect is always stronger along the mirror axis. This is evident when
counter-propagating beam traps in figures 4.18 and 4.19 are compared; the
Fz force curve is significantly distorted and the point about which the force
component Fz changes direction in the ŷ standing wave of figure 4.18 shifts
from the origin by about 75 nm away from the mirror surface along ẑ. On
the other hand, no such shifts are visible in the Fx and Fy of the ẑ standing
wave of figure 4.19. Instead a small shift is visible for Fz. Note that relatively
large Rayleigh particles were considered in this numerical study of the standing
wave traps (rp = 150 nm). This is because, in a counter-propagating beam
trap the scattering force along the propagation direction of the beams does
not contribute, and one might want to choose larger particles for trapping.
However, SIBA provides an additional pushing force along the mirror axis,
which is stronger for larger particles. Indeed, the position shifts become
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Figure 4.18: Trapping forces acting on a silica nanosphere of radius rp = 150 nm in a two
counter-propagating Gaussian beams propagating along ŷ. The beams are in-phase at the origin.
Top: Fx, Fy and Fz components of the trapping force (pN) in free space Middle: Fx, Fy and Fz

components of the trapping force (pN) including the effect of the spherical mirror Bottom: Slice
of the contour plots for Fx, Fy and Fz. The inset figure for Fz shows the shift of the equilibrium
position.
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Figure 4.19: Trapping forces acting on a silica nanosphere of radius rp = 150 nm in a two
counter-propagating Gaussian beams propagating along ẑ. The beams are in-phase at the origin.
Top: Fx, Fy and Fz components of the trapping force (pN) in free space Middle: Fx, Fy and Fz

components of the trapping force (pN) including the effect of the spherical mirror Bottom: Slice
of the contour plots for Fx, Fy and Fz. The inset figure for Fz shows the shift of the equilibrium
position.
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Figure 4.20: Equilibrium position shift ∆z and field gradient |∂zẼ(r0)|2/(k0E0)2 against particle
radius rp. Results are independent of laser power. As a reference for the scale on the y-axis, we
note that at the focus of a weakly-focused Gaussian beam |∂zẼx(r0)|2 ≈ (kE0)2.

negligible for particles of radius rp = 100 nm. Therefore, if focusing as strong
as NA = 0.3 is not available (as would be the case in the proposed SWIFT
configuration, see next chapter), one can always ensure that SIBA does not
have a significant contribution to trapping by choosing smaller particles.

In the previous chapter, the calculation of backaction noise relies on the
vanishing field gradient of the trapping laser. This rests on the assumption
that in a standing wave, the scattering force cancels out and the particle’s
equilibrium position is located at the point of zero-gradient. Although the
shifts in equilibrium position for a ẑ standing wave are small, we nonetheless
compute the gradient at the particle’s new equilibrium position to test the
validity of this approximation. At the condition k0rm = nπ, Im [Gxx] is
twice as large as in free space for a full hemisphere (cf. equation (3.29)).
Therefore, a non-vanishing field gradient along the ẑ axis gives rise to noise
SF

zz = (ℏk0P0/πc)(|∂zẼ(r0)|2/(k0E0)2) where Ẽ(r0) is the electric field x̂
component, evaluated at the position of the particle with the inclusion of the
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SIBA correction and E0 is the trapping field amplitude. In figure 4.20 we plot
the equilibrium position shift (here denoted ∆z) along the mirror axis and
|∂zẼ(r0)|2/(k0E0)2 against particle radius. Figure 4.20 shows that for radii
r < 200 nm, the residual field gradient is likely not to be the limiting factor
for the suppression of backaction noise when compared to other experimental
limitations.
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Chapter 5

SWIFT: Standing wave
interference fibre trap

The coincidence of the backaction suppression condition on the mirror
radius with the location of the trap maximum is a convenient feature of the
hemisphere reflection trap. However, this coupling of the trap position to
mirror radius is a hindrance on the design of experimental protocols, since
the particle has to be shifted from the mirror centre to be efficiently probed.
In this chapter, we analyse and document the design process of an alternative
fibre-based trap configuration. Here the trapping potential is generated by
cleaved optical fibres emitting lasers, independent of the mirror surface,
meaning that the mirror radius and the trap position are decoupled.

5.1 Trap description

The setup is shown in figure 5.1. In contrast to standard arrangements in
levitated optomechanics, the trapping potential is formed by cleaved, single-
mode (SMF-28) fibres radiating λ = 1550 nm laser light, separated a distance
∼ 100 µm. Light leaving a cleaved SMF-28 fibre is well approximated by a
Gaussian beam with its waist w0 = 5.2 µm (refered to as the mode field
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cleaved fibrestrapped particle

spherical mirror

heating element

Fibre arrangements:

∼ 102 µm

10.4 µm 125 µm

Hexagonal

Octagonal

y
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XY plane

XY plane
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Figure 5.1: Standing wave interference fibre trap (SWIFT). The particle is trapped at the centre
of a spherical mirror in an optical lattice formed by light propagating out of optical fibre endfaces.
A heating element is used to stabilise mirror temperature, independently of trap position. In the
octagonal arrangement, 4 orthogonal fibres are used for trapping with the other 4 used for pick-up
of particle scatter. In the hexagonal arrangement, the 3 fibres are used for both trapping and
pick-up of scatter. The figure also shows intensity profiles around the centre point of the hexagonal
arrangement (top) and the octagonal arrangement (bottom) in the xy and xz planes relative to
the coordinate system shown. For the octagonal arrangement, four orthogonal fibres are used for
trapping, while the other fibres at 45◦ are used for pick-up of particle scatter.
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Figure 5.2: Trap depth for laser power per fibre and fibre-centre distance in the hexagonal (left,
3 trapping fibres) and octagonal (right, 4 trapping fibres) fibre arranagements, for a silica particle
with radius 150 nm. Note the different distance ranges on the x-axis, which were chosen based on
the geometrical limits of the two different configurations.

radius) located at the fibre endface [123]. Throughout this chapter, we will
consider the trapping fields radiating from the fibres to be polarised in the same
direction, along the symmetry axis of the mirror. Since the beams propagate
in a common plane, this results in maximum interference and therefore better
modulation of the optical lattice. In both the hexagonal and octagonal fibre
arrangements, the fibres generate a cigar-shaped optical lattice profile depicted
in figure 5.1. The phases of the trapping beams can be addressed individually,
giving the freedom to shift the trapping position with the particle in the xy
plane, independent of the mirror radius. Having this degree of control over the
trap position in the SWIFT fibre arrangement, also permits direct feedback
cooling by phase-modulation in the xy plane, in contrast to the commonly
implemented parametric feedback cooling [37]. Such linear feedback is usually
implemented using electrostatic forces and is referred to as cold damping [124–
126]. The scattering force has a negligible impact near the trap centre for a
well aligned configuration. To verify this, we simulate particle dynamics using
a Langevin equation driven by a stochastic force corresponding to a thermal
bath at atmospheric pressure and the full optical force from equation (2.25).
The results are shown in figure 5.4. Note that the particle always ends up near
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Figure 5.3: An xy intensity profile (right) generated in a decagonal arrangement with a 5-fold
symmetry of the fibres (left).

centre of each trap site. Ignoring the impact of the scattering force, the optical
force is conservative and we can estimate the trappability with the trap depth
of the corresponding optical potential,

U = −α

4 I(x, y, z) (5.1)

where I and α are the total field intensity and free-space particle polarisability
respectively. Since the trapping potential is proportional to the intensity at
the particle position, in a trap configuration consisting of total laser power P
split among N fibres emitting laser fields that constructively interfere at the
trap centre we have U ∝ |∑N

i Ei|2 ∝ NP . Although the trap depth scales
linearly with the number of trapping fibres, the geometry of the arrangement
also plays a role (see figure 5.2); In general it is always possible to bring
fibres closer in the hexagonal arranagement since fewer fibres are needed.
Fibres stripped of their buffer have a diameter of 125 µm. With each fibre
equidistant from the centre point, this gives a minimum distance of about 30
µm and 150 µm for the hexagonal and octagonal arrangements respectively.
The result is that at the minimum separation of fibres for each configuration,
the hexagonal arrangement can reach higher trap depths even when more net
optical power is supplied in the octagonal arrangement. We note that not all
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Figure 5.4: Testing the influence of the scattering force in the hexagonal arrangement. 100 particle
trajectories from a 3d simulation of the Langevin equation which describes particle dynamics.
Particles are initialised at a random position in a (5 µm)3 cube (blue circles). The red triangles
show the final position of the particles 500 ms later.

two-dimensional fibre arrangements produce a lattice such as those discussed
above. For example, decagonal configuration with 5-fold symmetry of the
fibres generates a central maximum but not a regular lattice (see figure 5.3).
We do not consider such an arrangement in this work, but it may be useful
for other applications.

The intensity profiles for the arrangements shown in figure 5.1 suggest that
the particle can only be weakly confined by the SWIFT arrangement along
the mirror axis relative to the xy lattice plane. Because of this, there is a
discrepancy between trap frequencies in the xy plane (fast axes, denoted ⊥)
and along the mirror (slow, denoted ∥) axis; estimating the spring constant
with ki = mΩ2

i ≈ −∂2
i U , allows us to estimate the trap frequencies. For typical

parameters we get Ω⊥/2π = 50 kHz and Ω∥/2π = 1 kHz.
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Figure 5.5: Particle scatter fibre coupling calculation diagram

5.2 Scatter collection efficiency
The fibres in the SWIFT configuration are used for both trapping and particle
position detection. This is possible because laser light polarised along mirror
axis, scattered by the particle can be efficiently coupled into the fibres. In
general, not all light incident upon a fibre endface couples to the single mode
which the fibre carries. We can compute how much power from particle
scatter is coupled into the fibre, using the standard techniques for step-index
fibres under the weak-guidance approximation [127], which assumes that the
difference in the refractive index between the 125 µm cladding and the 8.2 µm
diameter core is small. To simplify the calculation we also assume that the
particle is located some distance L ≫ λ along the central axis orthogonal
to a fibre endface (see figure 5.5)1. Assuming harmonic time dependence
throughout, the total transmitted electric field on the fibre endface is split
into two orthogonal terms,

Etot = a0e0 + Erad (5.2)

where Erad is the radiation field which does not couple into the fibre and e0 is
the normalised electric field of the fundamental mode which remains guided in
the fibre with amplitude a0. This fundamental mode has a transverse profile
given by a Bessel function [128] which is well approximated by a Gaussian
beam profile of waist 5.2 µm located at the fibre endface [129]. The coupling

1Since we are assuming L to be large, the result will remain approximately valid for a particle
displaced from the central axis by ∼ λ.
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amplitude is given by, [127]

a0 = 1
2N0

∫
(e0 × H∗

tot) · x̂ dA = 1
2N0

∫
(h0 × E∗

tot) · x̂ dA (5.3)

where h0 is the magnetic field corresponding to the fundamental mode,
fields Etot and Htot denote transmitted fields on the fibre end-face, and the
normalisation factor,

N0 = 1
2

∫
(e0 × h∗

0) · x̂ dA = nπw2
0

2cϵ0
(5.4)

The integration runs over the infinite plane orthogonal to the unit vector x̂
which we truncate to only contain the fibre endface. The coupled power is
then obtained from P = a0N

2
0 . The calculation is therefore reduced to finding

the transmitted fields on the fibre endface.
We find the transmitted dipole emission fields by decomposing it into s-

and p- polarisation components and using the Fresnel coefficients, [13]

ts = 2kx
1

kx
1 + kx

2
, kx

1 =
√
k2 − k2

y − k2
z

tp = 2nkx
1

n2kx
1 + kx

2
, kx

2 =
√
n2k2 − k2

y − k2
z

(5.5)

where kx
1 and kx

2 are the wavevector components of the dipole emission in
medium 1 (assumed vacuum) and the medium 2 (glass fibre) respectively. Here
we are assuming that the fibre has a uniform refractive index n = 1.4682 [130].
For large L only dipole far-fields reach the fibre endface. This simplifies the
calculation because far-fields have a wavevector pointing radially away from
the particle location. Using (5.5) with dipole far-fields and substituting into
(5.3) we find the result for the coupling amplitude,

a0(L) = nk2π|p0|
8cϵ2

0N0

∫
ts(ρ, L) eik

√
ρ2+L2

(ρ2 + L2)3/2 e
−ρ2/2w2

0(ρ2 + 2L2)ρ dρ (5.6)
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Figure 5.6: Particle scatter coupled into a fibre, normalised to the total scattered power in the
hexagonal configuration. The plot accounts for increasing trap depth with decreasing distance L.

where |p0| is the dipole moment amplitude, ρ =
√
y2 + z2 and,

ts(ρ, L) = 2
1 +

√
1 + ρ2

L2

[
n2 − ρ2

√
ρ2 + L2

]−1

(5.7)

Throughout this section, we have assumed that the particle is polarised along
mirror axis ẑ. In figure 5.6 we plot the scattered power of dipole emission
coupled into a fibre, accounting for the increasing trap depth with decreasing
distance L. We find that at distance of about 150 µm, 0.1 % of scattered power
couples into a single fibre. In the hexagonal arrangement, when detecting on
all three fibres, this is approximately equivalent to a collection efficiency from
particle at the focus of a lens with NA = 0.1.

In the octagonal arrangement, the trapping fibres cannot be used for pick-
up of particle scatter because light coupled across from the opposing trapping
fibres swamps the signal. Because of this, in the octagonal arrangement
additional pick-up fibres are needed at 45◦. These pick-up fibres receive a
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clean particle signal with no interference from the trapping fibres, due to the
weak divergence of the trapping beams and highly inefficient coupling to an
angled fibre. The same is true for the hexagonal arrangement, but in addition
there is no cross-talk between trapping fibres and therefore they can be used
for both trapping and detection. The glass-air interface of the fibre endfaces
reflects back about 4 % of incident power. This small percentage can be used
as a reference field for homodyne detection.

5.3 Particle position detection

In an interferometric measurement, displacement in the xy (denoted x⊥) plane
generates linear changes in the optical path to the fibre endfaces. Because
of this, the fibres detect a signal proportional to the phase change due to
displacement along the fibre axis kx⊥. On the other hand, the fibres can
only detect second-order displacement along the mirror axis, with the signal
proportional to ∆ϕ = k

√
L2 + z2 − kL ≈ kz2/(2L). However, since the

particle is weakly confined along the mirror axis, its displacement is large;
using equipartition theorem kBT = mΩ2

i ⟨x2
i ⟩ and the earlier estimates of trap

frequencies for typical trap parameters we find (x⊥)rms ≈ 35 nm and (z)rms ≈ 2
µm. For these values, assuming that the fibre is at a distance L = 100 µm,
displacements in the xy plane and along the mirror axis generate comparable
phase modulations of k(x⊥)rms = 0.12 and k(z)2

rms/L = 0.16.
Using the hexagonal trap and specifications of our photodetector as an

example, we can estimate the signal to noise ratio in a position detection
experiment. Assuming that each fibre carries 250 mW of laser power and is
separated by 150 µm from the trap centre point, we can numerically compute
that a 150 nm radius particle would scatter a total power of about 50 µW. As
mentioned in the previous section, at 150 µm each fibre collects 0.1 % of total
scattered power at this separation, or 0.05 µW in this case. The interferometric
signal power scales as ∼ ϕmod

√
PcolPref where ϕmod, Pcol and Pref denote signal

phase modulation, collected power and reference power respectively. If the
fibre back-reflection is used as the interferometric reference, the reference
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Figure 5.7: (Top): Experimental time-trace of the particle passing through the observable region
in the trap (Bottom): Signal reproducing the lineshape above based on the dependence in equation
(5.8).

power is equal to about 10 mW, which corresponds to 4 % of the 250 mW laser
power incident upon the fibre endface. With the estimates of phase modulation
discussed in the previous paragraph, this gives a signal amplitude of about
3.4 µW. Considering our balanced photodector PDB440C from Thorlabs which
has a noise-equivalent power of 3.9 pW/

√
Hz, the motion in three dimensions

should be detectable solely using fibres for detection. A benefit and a potential
drawback of this detection method is, however, that particles only very near
or at the central maximum can be detected. If a particle gets trapped at an
optical lattice site several wavelengths away from mirror the centre, the fibres
would not capture its motion.

In trapping attempts, particles were introduced using the nebuliser method
from above the SWIFT mount. The particles did not stay trapped, and instead
would only briefly pass by through the observable region, appearing as short
blips on the signal time-trace (see figure 5.7). The lineshape of these events
is reproduced by a simple model of the interferometric signal, in which the
particle moves at a constant velocity through the central region along the z
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axis and probing regions of changing intensity,

V (t) ∝ cos
(
k(vt)2

2L

)
exp

(
−(z0 + vt)2

w(L)2

)
(5.8)

where z0 is the initial particle height along the mirror axis, v is particle velocity
along z, L is the distance to the fibre and w(L) is the beam waist. An example
of a captured time trace and its model is shown in figure 5.7.

5.4 Challenges and limitations
Decoupling of the optical potential from the mirror radius makes SWIFT an
attractive avenue for studying the backaction suppression effect. The optical
potential itself may prove to be versatile for other applications due to its ability
to freely translate the trap sites in the lattice plane, and prospects for cooling
by phase modulation. When fully functional, SWIFT could operate as a stand-
alone device with trapping and detection fibre ports and without the need for
maintaining fibre alignment. However, as of the end of this project, SWIFT
is still in development and several potential limitations to stable trapping still
need to be investigated. In this section we discuss some of the experimental
challenges considered in the development of the SWIFT configuration. We also
discuss limitations in the application of this fibre trap for the demonstration of
backaction suppression, in comparison to the hemisphere reflection standing
wave trap. The work on SWIFT is ongoing, and improvements discussed in
this section will be implemented in future experiments.

5.4.1 Fibre alignment
The SWIFT configuration crucially relies on precise alignment of the fibres to
a common point for trapping and detection. Misalignment of fibres can yield
an unstable trapping potential poor detection of particle scatter or detection
of a region in space too far from the centre of the spherical mirror.

A good alignment can always be achieved by mounting fibres on translation
stages, however since at least three fibres have to be aligned for the SWIFT
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Figure 5.8: (Left) First iteration of the SWIFT mount - v-grooves drilled into a slab of aluminium
using a corner of a flat end mill. (Middle) Microscope image of the v-grooves. The surface is visibly
rough. (Right) Microscope image of the mount with fibres in place.

configuration, such an implementation is expensive and spatially inefficient.
Because of these limitations, we aimed at designing a solid-state mount with
aligned grooves to which the fibres can be fixed. Such an implementation of
the SWIFT configuration could operate as a stand-alone device with small
dimensions and without the need for fibre realignment. During the course
of the project, several iterations of the SWIFT configuration were developed,
each one aiming to improve fibre alignment (see figures 5.8, 5.10 and the yet
untested iteration shown in 5.11). Starting from the second iteration 5.10, the
mounts were developed in collaboration with the Southampton Planar Optical
Materials Research Group which specialises in the design and fabrication of
photonic devices [131,132].

Alignment was assessed by coupling laser light across a variable gap between
opposing fibres. For opposing fibres, the general shape of the curve of coupled
power with varying gap size can be assessed using the simple overlap integral,
[127]

η = |
∫
e0E

∗
0(L)dA|2∫

|e0|2dA
∫

|E0(L)|2dA (5.9)

where η is the fraction of total power that gets coupled into the receiving
fibre, e0 = exp(−ρ2/w0) is the electric field mode amplitude and E0 is the
amplitude of the incident field. When the incident field profile is that of
an aligned Gaussian beam with its waist a distance L away, then E0 =
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Figure 5.9: Fraction of total radiated power coupled into an opposing fibre separated by a distance
L, measured on fibres clamped to the silicon mount. The solid line corresponds to equation (5.10)
evaluated at w0 = 5.2 µm.

(w0/w(L)) exp(−ρ2/w(L)2) and,

η = 4z2
R

L2 + z2
R

(L2 + 2z2
R)2 (5.10)

The results of coupling measurements of fibres clamped to the silicon mount
are shown in figure 5.9, which shows good agreement of the overlap integral
with the data for separations smaller than 250 µm. The discrepancy is likely
due to stray reflections coupling to the receiving fibre at large separations.

5.4.2 Trapping light reflection interference
It is not possible to implement the SWIFT configuration with a full unaltered
hemispherical mirror. This is simply because the fibre axes can never be
aligned in parallel with one another and with the centre of the mirror without
obstructing its surface. Any reduction in the mirror surface area would render
the suppression effect less effective. For maximum retention of the mirror
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Figure 5.10: Second iteration of the SWIFT configuration. (A) Silicon mount with micromachined
trenches developed in collaboration with the Southampton Planar Optical Materials Research
Group. (B) Microscope image of the mount cross-section with a fibre on the silicon substrate.
(C) and (D) Microscope image of the silicon mount with the fibres in place. (E) Design of the
3d-printed outer mount used for initial delivery of fibres onto the silicon mount for alignment (F)
Fibre trap in operation. Hexagonal M3 nut used as an ad-hoc clamping solution.
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Figure 5.11: Latest iteration of SWIFT for future testing. (Left): Fibres are initially aligned
using translation stages and later fixed in place on the SWIFT mount using epoxy glue. (Right):
fixed fibre arrangement after alignment. Fibre endfaces positioned 100 µm away from the midpoint.
Fibre heights are aligned to less than 1 µm difference.

solid angle, we can imagine milling trenches into the mirror surface to align
the fibres with the mirror centre point, or utilising electrostatic forces to shift
the equilibrium position of the particle [133]. For a large mirror (with radius
>1 mm) the residual backaction noise from the removed mirror surface should
be small. Even so, another issue arises as the trapping light can reflect from the
mirror surface and modify the trapping potential, particularly in the hexagonal
arrangement in which the trapping fibres would face the metallic surface of the
mirror.

We simulate this for a simple arrangement depicted on the left of figure 5.12.
We use the SCUFF-EM software package which implements the boundary
element method for scattering problems to simulate the reflected fields from
the edge of the mirror surface. The amount of memory required in the
simulation scales with the number of elements used to mesh the scattering
surface. For accurate modelling, most elements need to have dimensions
smaller than the wavelength of scattered light. To avoid simulating a whole
mm-scale hemisphere, which is not computationally tractable, we simulate
only a small patch of the mirror’s edge upon which the beam is incident, and
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Figure 5.12: Trapping light reflection interference. (Left) Simulation setup. A Gaussian beam
aligned with the mirror centre at a distance d = 100λ, propagating towards a patch of the simulated
surface with radius rm = 300λ. (Right) Plot of intensity modulation evaluated in a small patch
of area 4λ2 around the mirror centre, plotted against mirror spanning angle θm. The simulation
was performed using the software suite SCUFF-EM [116,117] implementing the boundary element
method for scattering problems.

that is larger than the beam’s waist at the surface.
Ideally, the intensity of the field in the evaluated region shown in figure

5.12 should be close to uniform. However, interference of the beam with its
reflection from the mirror’s edge gives rise to intensity modulation. Large
intensity modulation is undesirable as it significantly changes the trapping
potential in a way which depends on the mirror radius, and which can
destabilise the trap. The simulation results on the right of figure 5.12 shows
that the reflection strongly modulates the intensity in the neighbourhood of
the mirror centre point for the mirror spanning angle larger than about 70◦.
This places limits on the maximum θm which could realistically be used for
demonstrating suppression of backaction using the hexagonal arrangement.

Unlike in the SMART configuration, in SWIFT the particle is polarised
along the mirror axis. Figure 5.13 shows the imprecision noise for a particle
polarised along the mirror axis (labelled ẑ on the plot relative to the coordinate
system in figure 3.1) against θm at the backaction suppression condition k0rm =
nπ (c.f. figure 3.3). While the figure shows that at about θm = 70◦ the noise
along the mirror axis remains mostly suppressed, we can expect more than
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Figure 5.13: Standing wave measurement imprecision Simp
ii against spherical mirror NA found by

solving (3.12) for a particle polarised along the mirror axis. Filled lines indicate variation with θm

for k0rm = nπ. Dashed lines indicate free-space levels in a standing wave (at θm = 0). For clarity,
we note that in a standing wave, the beam axis direction does not enter the calculation.

50% imprecision noise in the orthogonal plane, and correspondingly residual
backaction. Based on this consideration, SWIFT does not appear to be the
most practical choice for exploiting the suppression effect in three dimensions,
but can nonetheless be a sufficient platform for its demonstration.

5.4.3 Residual backaction noise in SWIFT
Just as in section 4.9 for SMART, we analyse the influence of the SIBA force
for the SWIFT optical trap potential. We show the trapping forces for the
hexagonal SWIFT configuration in figure 5.14. Let us first note some of the
similarities and differences between SIBA influence in SWIFT and SMART.
In both configurations, SIBA only has a noticeable influence on the force
acting along the mirror axis. In SWIFT however, the confinement along the
mirror axis is considerably weaker, which leads to a significant reshaping of the
trapping potential by the mirror-reflected scatter. Additionally, in contrast to
SMART, the bottom left of figure 5.14 shows that the force component Fz has
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Figure 5.14: Trapping forces acting on a Silica nanosphere of radius rp = 150 nm in the hexagonal
SWIFT configuration, with the fibres at a distance of 100 µm from the centre point. The beams
are in-phase at the origin. Top: Fx, Fy and Fz components of the trapping force (pN) in free space
Middle: Fx, Fy and Fz components of the trapping force (pN) including the effect of the spherical
mirror Bottom: Slice of the contour plots for Fx, Fy and Fz.
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Figure 5.15: Equilibrium position shift ∆z and field gradient |∂zẼ(r0)|2/(k0E0)2 against particle
radius rp for the hexagonal SWIFT configuration, with fibres separated by a distance 100 µm from
the centre point. Results on the left and right plots show results for the positive and negative
equilibrium position of the particle respectively.

two equilibrium positions about z = 0 (mirror centre).
Using the same arguments as in section 4.9 we now analyse the residual

backaction noise experienced by a silica nanosphere at the positive and
negative equilibrium positions, due to a non-vanishing field gradient. The
result is shown in figure 5.15. In SWIFT, the shift of the trap position
away from the mirror centre decreases with increasing particle size, and
plateaus at around ∆z = ±300 nm. The shift is an order of magnitude larger
than in SMART for equal particle radii, which increases residual backaction
according to figure 3.6, but the corresponding residual backaction noise from
a non-vanishing field gradient is comparable to SMART.

5.4.4 Residual nanoparticle charge

Silica nanoparticles usually carry some residual charge. In levitated opto–
mechanics, this fact is exploited to control the nanoparticle trap centre position
[133] and to cool its motion in a feedback cooling scheme referred to as
cold damping [124–126], which relies on applying an electrostatic feedback
force on an optically confined particle. This residual charge, however, can
potentially render the optical trap unstable if a charged environment exerts
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strong electrostatic forces on the particle. This is of particular concern in
our SWIFT configuration, as the trap site is surrounded by large dielectric
surfaces of the optical fibres at distances of ∼ 100 µm which themselves can
accumulate charge. This is an issue known from the minaturisation efforts of
ion traps [134,135]. Effects of residual charge may be the current limiting factor
on the operation of the SWIFT configuration. Nonetheless, some experimental
steps can be taken in the future implementations to minimise these detrimental
influences. On one hand, one can strive for discharging the nanoparticle,
in which case the particle would no longer be susceptible to electrostatic
forces. It has been shown recently, that the net charge of an optically trapped
nanoparticle can be controlled on the level of individual elementary charges,
without excessive modifications of the trapping architecture [114, 136]. In
the context of SWIFT, an auxiliary stable optical trap may be required to
implement the discharging scheme.

On the other hand, efforts can be made to neutralise the trap site itself
using a neutralising ion gun (for example, Top Gun III from Simco-Ion [137]).
In addition an Indium-Tin-Oxide (ITO) coated glass cover could be used, to
clamp the fibres in place and serve as a discharge channel.
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Conclusion

To summarise, we have found that a suitable structured environment can yield
significant reduction of mechanical noise due to laser recoil. We have studied
a highly reflective spherical mirror as a particular case, and found that it can
be used to inhibit the force noise from laser recoil in three dimensions. The
suppression scheme also requires the particle to be trapped in a standing wave
trapping field. A partial suppression effect can be achieved with selective
patches of the spherical mirror geometry, which could be used to increase the
effective collection efficiency in an experiment.

Counter-intuitively, our results show that the suppression condition is
also the condition for which the scattered power, usually associated with
recoil noise, is maximally enhanced by the spherical mirror. This is in
contrast to recent findings [91], which suggest that suppression of emission
leads to suppression of backaction noise. Our result can be understood
in the context of the position information content in the outgoing particle
scatter; at the suppression condition, the image dipole appears identical to
the real particle to first order in particle position about the mirror centre,
preventing localisation in a position tracking experiment. For all experimental
conditions considered, we have shown that this measurement imprecision and
the corresponding backaction satisfy the Heisenberg limit of detection. The
method presented here shows how an appropriate reflective surface geometry
can be used to mitigate backaction, and may enable development of more
sophisticated schemes for particles of different sizes and shapes in future
experiments. In addition, a wider range of geometries may be suitable, if one
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wishes to suppress the backaction noise only in one or two directions.
The amount by which recoil noise can be suppressed using our method

will either be limited by experimental factors (such as mirror reflectivity,
thermal stability or surface quality) or smaller residual backaction noise terms
unaccounted for in our calculation. Our result predicts particle reheating due
to backaction, but future studies will require a quantum description to model
evolution of particle motion near surfaces [59]. Additional insight might be
gained from studies of the modified radiation damping near surfaces, which
balance the fluctuations due to backaction [87].

The analysis of our experimental configuration in chapter 4 shows that
the suppression conditions can be met conveniently with a focused beam
retroreflected from a spherical mirror. The experimental results for the setup
constructed in this project demonstrate it to be a robust trapping geometry,
which serves as the first step in realising our backaction suppression scheme.
Future efforts will need to be placed on developing precise particle loading
and positioning protocols within the standing wave trap. Experimental
observation of the suppression effect on the particle reheating trajectories
will require mitigation of common sources of mechanical noise, which usually
swamp the weak effect of backaction, and implementation of feedback cooling.
The SMART configuration may be able to facilitate implementation of the
optical cold damping scheme in a standing wave, which was recently used
for cooling the particle motion close to the ground-state [114]. Successful
application of the backaction suppression scheme may extend coherence times
of quantum states of motion of trapped particles, and enable new types of
experiments, aiming at developing macroscopic quantum superpositions, in
which the trapping laser need not be switched off.
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Appendix A

Mathematical definitions
and results

A.1 Mathematical definitions

In this thesis, we define the time-domain Fourier transform and its inverse
with,

ã(ω) = 1
2π

∫
R
a(t)eiωtdt

a(t) =
∫
R
ã(ω)e−iωtdω

(A.1)

We will also use the following definition of the convolution,

{
ã ∗ b̃

}
(r0, ω) =

∫
R
ã(r0, ω

′)b̃(r0, ω − ω′)dω′ (A.2)

for two scalars, and for a scalar and a vector

{
ã ∗ b̃

}
(r0, ω) =

∫
R
ã(r0, ω

′)b̃(r0, ω − ω′)dω′ (A.3)
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A.2 Phase shift of focused fields
Consider a field focused along z to z = 0 from ∞ to −∞. Angular spectrum
representation tells us that we can always represent fields in terms of its two-
dimensional Fourier transform of the spatial plane coordinates [13]. With this
Fourier representation of the fields in the focal plane z = 0 we can write the
fields as,

E(x, y, z) =
∫

Ẽ(kx, ky)eik·r dkx dky (A.4)

where k = (kx, ky, kz), r = (x, y, z) and Ẽ(kx, ky) is the angular spectrum
representation of E in the plane z = 0. For large distances from the focal
plane r =

√
x2 + y2 + z2, the integral in equation (A.4) can be solved by the

method of stationary phase with a solution for the far-field, [80]

E(x, y, z) ≈ 2πiσ
kr
√

|∆|
Ẽ(kp, kq)eikrg(p,q) (A.5)

with g(p, q) = (px + qy + mz)/r, ∆ = gpp − g2
pq, Σ = gpp + gqq where the

subscripts denote derivatives and,

σ = +1, ∆ > 0,Σ > 0
= −1, ∆ > 0,Σ < 0
= −i, ∆ < 0.

(A.6)

For the fields considered in this section, we have kz = km = −k
√

1 − p2 − q2 in
both half-spaces. Evaluating the solution in equation (A.5) for this condition
gives the solutions,

E+(r) = 2πi
k2r

kzẼ(−kx,−ky)e−ikr z > 0

E−(r) = −2πi
k2r

kzẼ(kx, ky)eikr z < 0
(A.7)

where kx = kx/r, ky = ky/r and kz = −
√
k2 − k2

x − k2
y. We can link the two

expressions for the far-fields giving the final result,

E−(r) = −e2ikrE+(−r). (A.8)
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which tells us that the far-fields map along antipodes, with a phase
corresponding to the path difference 2kr and a π phase delay.
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Appendix B

Imprecision and
backaction calculation
details

B.1 Green’s function derivatives
The free space dyadic Green’s function is given by,

G0(r, r′) =
([ 3
k2R2 − 3i

kR
− 1

]
R̂R̂ +

[
1 + i

kR
− 1
k2R2

]
I
)
G0(R) (B.1)

where,

G0(R) = exp(ikR)
4πR

R = |r − r′|
(B.2)

Because of the functional form of (B.1) it is more convenient to compute the
derivative ∂i with respect to the radial distance R,

∂iG0(r, r′) = ∂R

∂xi

∂

∂R
G0(r, r′) = R̂i

∂

∂R
G0(r, r′) (B.3)
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where R̂i is the ith component of the unit radial vector R̂ whose direction
depends on the direction of the derivative. For the second derivative we find,

∂i∂
′
jG0(r, r′) =

([
R̂iR̂j − δij

] 1
R

∂

∂R
− R̂iR̂j

∂2

∂2R

)
G0(r, r′). (B.4)

The derivative in equation (B.4) is singular at r = r′ in general, but not
when we take the limit R → 0 for the imaginary part. Evaluating the radial
derivatives and taking this limit gives the result,

∂i∂
′
jIm

[
Gkl

0 (r, r′)
]

r=r′
= lim

R→0
∂i∂

′
jIm

[
Gkl

0 (r, r′)
]

= k3

30πδij(2δkl − δkiδlj)
(B.5)

The same result is obtained when one computes the derivative of only the
far-field component of the imaginary Green’s function, which shows that the
(kR)−2 and (kR)−3 terms do not contribute. This provides some insight into
why reflection of only the far-field light is sufficient for full modulation of
backaction noise.

B.2 Solutions for perfectly reflecting mirror
with varying NA

For a spherical mirror with reflection coefficient |ρ| = 1, the solution to (3.12)
for varying mirror NA specified by the polar half angle θm (see figure 3.1) is
given by,

Si
imp = ℏc

2πk0

1
P0
fi (B.6)

where,

fx = 320(256 + Re
[
ρe2ikrm

]
[256 − 270 cos(θm) + 5 cos(3θm) + 9 cos(5θm)])−1

fy = 320(512 + Re
[
ρe2ikrm

]
[512 − 570 cos(θm) + 55 cos(3θm) + 3 cos(5θm)])−1

fz = 10(−16 + Re
[
ρe2ikrm

]
[−16 + cos(θm)3(13 + 3 cos(2θm)))−1

(B.7)
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Solutions to (3.39) for varying θm are given by,

SF
xx(ω) = ℏk0

2πcP0

(
1
5 +

Re
[
ρe2ikrm

]
1280

[
256 − 270 cos (θm) + 5 cos (3θm) + 9 cos (5θm)

])

SF
yy(ω) = ℏk0

2πcP0

(
2
5 +

Re
[
ρe2ikrm

]
1280

[
512 − 570 cos (θm) + 55 cos (3θm) + 3 cos (5θm)

])

SF
zz(ω) = ℏk0

2πcP0

(2
5 + Re

[
ρe2ikrm

] [ 1
80 cos (θm)3 [13 + 3 cos(2θm)]

])
(B.8)
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